Displaying 21 – 40 of 207

Showing per page

Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties

Robert J. Berman, Bo Berndtsson (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

We show, using a direct variational approach, that the second boundary value problem for the Monge-Ampère equation in n with exponential non-linearity and target a convex body P is solvable iff 0 is the barycenter of P . Combined with some toric geometry this confirms, in particular, the (generalized) Yau-Tian-Donaldson conjecture for toric log Fano varieties ( X , Δ ) saying that ( X , Δ ) admits a (singular) Kähler-Einstein metric iff it is K-stable in the algebro-geometric sense. We thus obtain a new proof and...

Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems

Eduardo Casas, Fredi Tröltzsch (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Optimal control problems for semilinear elliptic equations with control constraints and pointwise state constraints are studied. Several theoretical results are derived, which are necessary to carry out a numerical analysis for this class of control problems. In particular, sufficient second-order optimality conditions, some new regularity results on optimal controls and a sufficient condition for the uniqueness of the Lagrange multiplier associated with the state constraints are presented.

Recent results on Lieb-Thirring inequalities

Ari Laptev, Timo Weidl (2000)

Journées équations aux dérivées partielles

We give a survey of results on the Lieb-Thirring inequalities for the eigenvalue moments of Schrödinger operators. In particular, we discuss the optimal values of the constants therein for higher dimensions. We elaborate on certain generalisations and some open problems as well.

Recent results on stationary critical Kirchhoff systems in closed manifolds

Emmanuel Hebey, Pierre-Damien Thizy (2013/2014)

Séminaire Laurent Schwartz — EDP et applications

We report on results we recently obtained in Hebey and Thizy [11, 12] for critical stationary Kirchhoff systems in closed manifolds. Let ( M n , g ) be a closed n -manifold, n 3 . The critical Kirchhoff systems we consider are written as a + b j = 1 p M | u j | 2 d v g Δ g u i + j = 1 p A i j u j = U 2 - 2 u i for all i = 1 , , p , where Δ g is the Laplace-Beltrami operator, A is a C 1 -map from M into the space M s p ( ) of symmetric p × p matrices with real entries, the A i j ’s are the components of A , U = ( u 1 , , u p ) , | U | : M is the Euclidean norm of U , 2 = 2 n n - 2 is the critical Sobolev exponent, and we require that u i 0 in M for all i = 1 , , p . We...

Currently displaying 21 – 40 of 207