Displaying 401 – 420 of 5493

Showing per page

A Static condensation Reduced Basis Element method : approximation and a posteriori error estimation

Dinh Bao Phuong Huynh, David J. Knezevic, Anthony T. Patera (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose a new reduced basis element-cum-component mode synthesis approach for parametrized elliptic coercive partial differential equations. In the Offline stage we construct a Library of interoperable parametrized reference components relevant to some family of problems; in the Online stage we instantiate and connect reference components (at ports) to rapidly form and query parametric systems. The method is based on static condensation at the interdomain level, a conforming eigenfunction “port”...

A strongly degenerate quasilinear equation : the elliptic case

Fuensanta Andreu, Vicent Caselles, José Mazón (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We prove existence and uniqueness of entropy solutions for the Neumann problem for the quasilinear elliptic equation u - div 𝐚 ( u , D u ) = v , where v L 1 , 𝐚 ( z , ξ ) = ξ f ( z , ξ ) , and f is a convex function of ξ with linear growth as ξ , satisfying other additional assumptions. In particular, this class includes the case where f ( z , ξ ) = ϕ ( z ) ψ ( ξ ) , ϕ > 0 , ψ being a convex function with linear growth as ξ . In the second part of this work, using Crandall-Ligget’s iteration scheme, this result will permit us to prove existence and uniqueness of entropy solutions for the...

A strongly nonlinear problem arising in glaciology

Jacques Colinge, Jacques Rappaz (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The computation of glacier movements leads to a system of nonlinear partial differential equations. The existence and uniqueness of a weak solution is established by using the calculus of variations. A discretization by the finite element method is done. The solution of the discrete problem is proved to be convergent to the exact solution. A first simple numerical algorithm is proposed and its convergence numerically studied.

A Superconvergence result for mixed finite element approximations of the eigenvalue problem

Qun Lin, Hehu Xie (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we present a superconvergence result for the mixed finite element approximations of general second order elliptic eigenvalue problems. It is known that a superconvergence result has been given by Durán et al. [Math. Models Methods Appl. Sci. 9 (1999) 1165–1178] and Gardini [ESAIM: M2AN 43 (2009) 853–865] for the lowest order Raviart-Thomas approximation of Laplace eigenvalue problems. In this work, we introduce a new way to derive the superconvergence of general second order elliptic...

A Superconvergence result for mixed finite element approximations of the eigenvalue problem∗

Qun Lin, Hehu Xie (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we present a superconvergence result for the mixed finite element approximations of general second order elliptic eigenvalue problems. It is known that a superconvergence result has been given by Durán et al. [Math. Models Methods Appl. Sci. 9 (1999) 1165–1178] and Gardini [ESAIM: M2AN 43 (2009) 853–865] for the lowest order Raviart-Thomas approximation of Laplace eigenvalue problems. In this work, we introduce a new way to derive the superconvergence of general second order elliptic...

A symmetrization result for nonlinear elliptic equations.

Vincenzo Ferone, Basilio Messano (2004)

Revista Matemática Complutense

We consider a solution u of the homogeneous Dirichlet problem for a class of nonlinear elliptic equations in the form A(u) = g(x,u) + f, where the principal term is a Leray-Lions operator defined on W01,p (Ω). The function g(x,u) satisfies suitable growth assumptions, but no sign hypothesis on it is assumed. We prove that the rearrangement of u can be estimated by the solution of a problem whose data are radially symmetric.

A symmetry problem

A. G. Ramm (2007)

Annales Polonici Mathematici

Consider the Newtonian potential of a homogeneous bounded body D ⊂ ℝ³ with known constant density and connected complement. If this potential equals c/|x| in a neighborhood of infinity, where c>0 is a constant, then the body is a ball. This known result is now proved by a different simple method. The method can be applied to other problems.

Currently displaying 401 – 420 of 5493