A stable mixed finite element method on truncated exterior domains
We propose a new reduced basis element-cum-component mode synthesis approach for parametrized elliptic coercive partial differential equations. In the Offline stage we construct a Library of interoperable parametrized reference components relevant to some family of problems; in the Online stage we instantiate and connect reference components (at ports) to rapidly form and query parametric systems. The method is based on static condensation at the interdomain level, a conforming eigenfunction “port”...
We prove existence and uniqueness of entropy solutions for the Neumann problem for the quasilinear elliptic equation , where , , and is a convex function of with linear growth as , satisfying other additional assumptions. In particular, this class includes the case where , , being a convex function with linear growth as . In the second part of this work, using Crandall-Ligget’s iteration scheme, this result will permit us to prove existence and uniqueness of entropy solutions for the...
The computation of glacier movements leads to a system of nonlinear partial differential equations. The existence and uniqueness of a weak solution is established by using the calculus of variations. A discretization by the finite element method is done. The solution of the discrete problem is proved to be convergent to the exact solution. A first simple numerical algorithm is proposed and its convergence numerically studied.
In this paper, we present a superconvergence result for the mixed finite element approximations of general second order elliptic eigenvalue problems. It is known that a superconvergence result has been given by Durán et al. [Math. Models Methods Appl. Sci. 9 (1999) 1165–1178] and Gardini [ESAIM: M2AN 43 (2009) 853–865] for the lowest order Raviart-Thomas approximation of Laplace eigenvalue problems. In this work, we introduce a new way to derive the superconvergence of general second order elliptic...
In this paper, we present a superconvergence result for the mixed finite element approximations of general second order elliptic eigenvalue problems. It is known that a superconvergence result has been given by Durán et al. [Math. Models Methods Appl. Sci. 9 (1999) 1165–1178] and Gardini [ESAIM: M2AN 43 (2009) 853–865] for the lowest order Raviart-Thomas approximation of Laplace eigenvalue problems. In this work, we introduce a new way to derive the superconvergence of general second order elliptic...
We consider a solution u of the homogeneous Dirichlet problem for a class of nonlinear elliptic equations in the form A(u) = g(x,u) + f, where the principal term is a Leray-Lions operator defined on W01,p (Ω). The function g(x,u) satisfies suitable growth assumptions, but no sign hypothesis on it is assumed. We prove that the rearrangement of u can be estimated by the solution of a problem whose data are radially symmetric.
Consider the Newtonian potential of a homogeneous bounded body D ⊂ ℝ³ with known constant density and connected complement. If this potential equals c/|x| in a neighborhood of infinity, where c>0 is a constant, then the body is a ball. This known result is now proved by a different simple method. The method can be applied to other problems.