On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball
This paper considers Schrödinger operators, and presents a probabilistic interpretation of the variation (or shape derivative) of the Dirichlet groundstate energy when the associated domain is perturbed. This interpretation relies on the distribution on the boundary of a stopped random process with Feynman-Kac weights. Practical computations require in addition the explicit approximation of the normal derivative of the groundstate on the boundary. We then propose to use this formulation in the...
In this paper we study the existence and multiplicity of the nontrivial solutions for a given elliptic system with Dirichlet boundary conditions and critical nonlinearity.
We obtain a description of the spectrum and estimates for generalized positive solutions of -Δu = λ(f(x) + h(u)) in Ω, , where f(x) and h(u) satisfy minimal regularity assumptions.
We prove existence/nonexistence and uniqueness of positive entire solutions for some semilinear elliptic equations on the Hyperbolic space.
We provide a detailed analysis of the minimizers of the functional , , subject to the constraint . This problem,e.g., describes the long-time behavior of the parabolic Anderson in probability theory or ground state solutions of a nonlinear Schrödinger equation. While existence can be proved with standard methods, we show that the usual uniqueness results obtained with PDE-methods can be considerably simplified by additional variational arguments. In addition, we investigate qualitative properties...
We provide a detailed analysis of the minimizers of the functional , , subject to the constraint . This problem, e.g., describes the long-time behavior of the parabolic Anderson in probability theory or ground state solutions of a nonlinear Schrödinger equation. While existence can be proved with standard methods, we show that the usual uniqueness results obtained with PDE-methods can be considerably simplified by additional variational arguments. In addition, we investigate qualitative properties...
2000 Mathematics Subject Classification: Primary 26A33; Secondary 47G20, 31B05We study a singular value problem and the boundary Harnack principle for the fractional Laplacian on the exterior of the unit ball.
The paper is about a sub-supersolution method for the prescribed mean curvature problem. We formulate the problem as a variational inequality and propose appropriate concepts of sub- and supersolutions for such inequality. Existence and enclosure results for solutions and extremal solutions between sub- and supersolutions are established.
A simple superconvergent scheme for the derivatives of finite element solution is presented, when linear triangular elements are employed to solve second order elliptic systems with boundary conditions of Newton’s or Neumann’s type. For bounded plane domains with smooth boundary the local -superconvergence of the derivatives in the -norm is proved. The paper is a direct continuations of [2], where an analogous problem with Dirichlet’s boundary conditions is treated.