Displaying 81 – 100 of 693

Showing per page

On a probabilistic interpretation of shape derivatives of Dirichlet groundstates with application to Fermion nodes

Mathias Rousset (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper considers Schrödinger operators, and presents a probabilistic interpretation of the variation (or shape derivative) of the Dirichlet groundstate energy when the associated domain is perturbed. This interpretation relies on the distribution on the boundary of a stopped random process with Feynman-Kac weights. Practical computations require in addition the explicit approximation of the normal derivative of the groundstate on the boundary. We then propose to use this formulation in the...

On a semilinear elliptic eigenvalue problem

Mario Michele Coclite (1997)

Annales Polonici Mathematici

We obtain a description of the spectrum and estimates for generalized positive solutions of -Δu = λ(f(x) + h(u)) in Ω, u | Ω = 0 , where f(x) and h(u) satisfy minimal regularity assumptions.

On a semilinear elliptic equation in n

Gianni Mancini, Kunnath Sandeep (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We prove existence/nonexistence and uniqueness of positive entire solutions for some semilinear elliptic equations on the Hyperbolic space.

On a semilinear variational problem

Bernd Schmidt (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We provide a detailed analysis of the minimizers of the functional u n | u | 2 + D n | u | γ , γ ( 0 , 2 ) , subject to the constraint u L 2 = 1 . This problem,e.g., describes the long-time behavior of the parabolic Anderson in probability theory or ground state solutions of a nonlinear Schrödinger equation. While existence can be proved with standard methods, we show that the usual uniqueness results obtained with PDE-methods can be considerably simplified by additional variational arguments. In addition, we investigate qualitative properties...

On a semilinear variational problem

Bernd Schmidt (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We provide a detailed analysis of the minimizers of the functional u n | u | 2 + D n | u | γ , γ ( 0 , 2 ) , subject to the constraint u L 2 = 1 . This problem, e.g., describes the long-time behavior of the parabolic Anderson in probability theory or ground state solutions of a nonlinear Schrödinger equation. While existence can be proved with standard methods, we show that the usual uniqueness results obtained with PDE-methods can be considerably simplified by additional variational arguments. In addition, we investigate qualitative properties...

On a sub-supersolution method for the prescribed mean curvature problem

Vy Khoi Le (2008)

Czechoslovak Mathematical Journal

The paper is about a sub-supersolution method for the prescribed mean curvature problem. We formulate the problem as a variational inequality and propose appropriate concepts of sub- and supersolutions for such inequality. Existence and enclosure results for solutions and extremal solutions between sub- and supersolutions are established.

On a superconvergent finite element scheme for elliptic systems. II. Boundary conditions of Newton's or Neumann's type

Ivan Hlaváček, Michal Křížek (1987)

Aplikace matematiky

A simple superconvergent scheme for the derivatives of finite element solution is presented, when linear triangular elements are employed to solve second order elliptic systems with boundary conditions of Newton’s or Neumann’s type. For bounded plane domains with smooth boundary the local O ( h 3 / 2 ) -superconvergence of the derivatives in the L 2 -norm is proved. The paper is a direct continuations of [2], where an analogous problem with Dirichlet’s boundary conditions is treated.

Currently displaying 81 – 100 of 693