Displaying 1721 – 1740 of 5493

Showing per page

Extremal solutions for nonlinear neumann problems

Antonella Fiacca, Raffaella Servadei (2001)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we study a nonlinear Neumann problem. Assuming the existence of an upper and a lower solution, we prove the existence of a least and a greatest solution between them. Our approach uses the theory of operators of monotone type together with truncation and penalization techniques.

Faisceaux d'espaces de Sobolev et principes du minimum

Denis Feyel, A. de La Pradelle (1975)

Annales de l'institut Fourier

On montre que le faisceau des sursolutions locales dans W loc 2 d’un certain opérateur elliptique L est maximal pour un principe du minimum adapté aux espaces de Sobolev. La continuité de la réduite variationnelle des éléments continus permet alors d’étudier des représentants s.c.i.

Faisceaux maximaux de fonctions associées à un opérateur elliptique du second ordre

Denis Feyel, A. de La Pradelle (1976)

Annales de l'institut Fourier

Soit F le faisceau des sursolutions variationnelles d’un opérateur différentiel elliptique du second ordre à coefficients L loc . Soit F ^ le faisceau des régularitées essentielles inférieures des éléments de F . On démontre que F ^ est contenu dans un seul préfaisceau F * maximal de cônes convexes de fonctions s.c.i. > - vérifiant le principe du minimum sur une base d’ouverts suffisamment petits. On démontre que F * possède toutes les bonnes propriétés d’une théorie locale du potentiel.

Fast multigrid solver

Petr Vaněk (1995)

Applications of Mathematics

In this paper a black-box solver based on combining the unknowns aggregation with smoothing is suggested. Convergence is improved by overcorrection. Numerical experiments demonstrate the efficiency.

Fefferman's SAK principle in one dimension

Frédéric Hérau (2000)

Annales de l'institut Fourier

In this article we give a complete proof in one dimension of an a priori inequality involving pseudo-differential operators: if a and b are symbols in S 1 , 0 2 such that | a | b , then for all ϵ > 0 we have the estimate a w u s 2 C ϵ ( b w u s 2 + u s + ϵ 2 ) for all u in the Schwartz space, where t is the usual H t norm. We use microlocalization of levels I, II and III in the spirit of Fefferman’s SAK principle.

Fegen und Dünnheit mit Anwendungen auf die Laplace-und Wärmeleitungsgleichung

Wolfhard Hansen (1971)

Annales de l'institut Fourier

Several properties of balayage of measures in harmonic spaces are studied. In particular, characterisations of thinness of subsets are given. For the heat equation the following result is obtained: suppose that E = R m + 1 is given the presheaf of solutions of i = 1 m u x i = u x m + 1 and B is a subset of R m × [ - , 0 ] satisfying { ( α x , α 2 t ) : ( x , t ) B , x R m , t R } B for α > 0 arbitrarily small. Then B is thin at 0 if and only if B is polar. Similar result for the Laplace equation. At last the reduced of measures is defined and several approximation theorems on reducing and balayage...

Feller semigroups and degenerate elliptic operators with Wentzell boundary conditions

Kazuaki Taira, Angelo Favini, Silvia Romanelli (2001)

Studia Mathematica

This paper is devoted to the functional analytic approach to the problem of construction of Feller semigroups with Wentzell boundary conditions in the characteristic case. Our results may be stated as follows: We can construct Feller semigroups corresponding to a diffusion phenomenon including absorption, reflection, viscosity, diffusion along the boundary and jump at each point of the boundary.

Currently displaying 1721 – 1740 of 5493