Existence and non-existence results for a nonlinear heat equation.
Problems of existence and nonexistence of global nontrivial solutions to quasilinear evolution differential inequalities in a product of cones are investigated. The proofs of the nonexistence results are based on the test-function method developed, for the case of the whole space, by Mitidieri, Pohozaev, Tesei and Véron. The existence result is established using the method of supersolutions.
A thermodynamically consistent model of shape memory alloys in three dimensions is studied. The thermoelasticity system, based on the strain tensor, its gradient and the absolute temperature, generalizes the well-known one-dimensional Falk model. Under simplifying structural assumptions we prove global in time existence and uniqueness of the solution.
We consider a class of degenerate reaction-diffusion equations on a bounded domain with nonlinear flux on the boundary. These problems arise in the mathematical modelling of flow through porous media. We prove, under appropriate hypothesis, the existence and uniqueness of the nonnegative weak periodic solution. To establish our result, we use the Schauder fixed point theorem and some regularizing arguments.
We consider the Fourier first initial-boundary value problem for an infinite system of weakly coupled nonlinear differential-functional equations of parabolic type. The right-hand sides of the system are functionals of unknown functions. The existence and uniqueness of the solution are proved by the Banach fixed point theorem.
We prove the existence and uniqueness of a renormalized solution for a class of nonlinear parabolic equations with no growth assumption on the nonlinearities.
We consider the Cauchy problem in ℝd for a class of semilinear parabolic partial differential equations that arises in some stochastic control problems. We assume that the coefficients are unbounded and locally Lipschitz, not necessarily differentiable, with continuous data and local uniform ellipticity. We construct a classical solution by approximation with linear parabolic equations. The linear equations involved can not be solved with the traditional...
We consider a nonlinear evolution inclusion defined in the abstract framework of an evolution triple of spaces and we look for extremal periodic solutions. The nonlinear operator is only pseudomonotone coercive. Our approach is based on techniques of multivalued analysis and on the theory of operators of monotone-type. An example of a parabolic distributed parameter system is also presented.