Nonlinear parabolic variational inequalities
This paper presents and summarize our results concerning the nonlinear tensor diffusion which enhances image structure coherence. The core of the paper comes from [3, 2, 4, 5]. First we briefly describe the diffusion model and provide its basic properties. Further we build a semi-implicit finite volume scheme for the above mentioned model with the help of a co-volume mesh. This strategy is well-known as diamond-cell method owing to the choice of co-volume as a diamondshaped polygon, see [1]. We...
The purpose of this paper is to study nonnegative solutions u of the nonlinear evolution equations∂u/∂t = Δφ(u), x ∈ Rn, 0 < t < T ≤ +∞ (1.1)Here the nonlinearity φ is assumed to be continuous, increasing with φ(0) = 0. This equation arises in various physical problems, and specializing φ leads to models for nonlinear filtrations, or for the gas flow in a porous medium. For a recent survey in these equations see [9].The main object of this work is to study the initial value problem...
is a bounded open set of , of class and . In the cylinder we consider non variational basic operator where is a vector in , , which is continuous in and satisfies the condition (A). It is shown that the Cauchy-Dirichlet problem , in , has a unique solution. It is further shown that if is a solution of the basic system in , then and belong to . From this the Hölder continuity in of the vectors and are deduced respectively when and .
De Pablo et al. [Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), 513-530] considered a nonlinear boundary value problem for a porous medium equation with a convection term, and they classified exponents of nonlinearities which lead either to the global-in-time existence of solutions or to a blow-up of solutions. In their analysis they left open the case of a certain critical range of exponents. The purpose of this note is to fill this gap.
The parabolic equations driven by linearly multiplicative Gaussian noise are stabilizable in probability by linear feedback controllers with support in a suitably chosen open subset of the domain. This procedure extends to Navier − Stokes equations with multiplicative noise. The exact controllability is also discussed.
Stability and convergence of the linear semi-implicit discrete duality finite volume (DDFV) numerical scheme in 2D for the solution of the regularized curvature driven level set equation is proved. Numerical experiments concerning comparison with exact solution and image filtering problem using proposed scheme are included.
This paper deals with the numerical approximation of mild solutions of elliptic-parabolic equations, relying on the existence results of Bénilan and Wittbold (1996). We introduce a new and simple algorithm based on Halpern’s iteration for nonexpansive operators (Bauschke, 1996; Halpern, 1967; Lions, 1977), which is shown to be convergent in the degenerate case, and compare it with existing schemes (Jäger and Kačur, 1995; Kačur, 1999).