Displaying 601 – 620 of 898

Showing per page

Perona-Malik equation: properties of explicit finite volume scheme

Angela Handlovičová (2007)

Kybernetika

The Perona–Malik nonlinear parabolic problem, which is widely used in image processing, is investigated in this paper from the numerical point of view. An explicit finite volume numerical scheme for this problem is presented and consistency property is proved.

Perturbation antisymétrique et oscillations dans des équations paraboliques

Isabelle Gallagher (1998)

Journées équations aux dérivées partielles

L'objet de cet exposé est l'étude d'équations d'évolution de type parabolique, périodiques, que l'on pénalise par un terme linéaire, antisymétrique. Par application des méthodes de S. Schochet pour le cas hyperbolique, on obtient un développement asymptotique des solutions de telles équations. La méthode suivie consiste à étudier l'influence de fortes oscillations en temps dans des systèmes paraboliques. Cette théorie est appliquée à deux systèmes décrivant le comportement de fluides géophysiques,...

Quantitative concentration inequalities on sample path space for mean field interaction

François Bolley (2010)

ESAIM: Probability and Statistics

We consider the approximation of a mean field stochastic process by a large interacting particle system. We derive non-asymptotic large deviation bounds measuring the concentration of the empirical measure of the paths of the particles around the law of the process. The method is based on a coupling argument, strong integrability estimates on the paths in Hölder norm, and a general concentration result for the empirical measure of identically distributed independent paths.

Quenching for semidiscretizations of a semilinear heat equation with Dirichlet and Neumann boundary conditions

Diabate Nabongo, Théodore K. Boni (2008)

Commentationes Mathematicae Universitatis Carolinae

This paper concerns the study of the numerical approximation for the following boundary value problem: u t ( x , t ) - u x x ( x , t ) = - u - p ( x , t ) , 0 < x < 1 , t > 0 , u x ( 0 , t ) = 0 , u ( 1 , t ) = 1 , t > 0 , u ( x , 0 ) = u 0 ( x ) > 0 , 0 x 1 , where p > 0 . We obtain some conditions under which the solution of a semidiscrete form of the above problem quenches in a finite time and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete quenching time. Finally, we give some numerical experiments to illustrate our analysis.

Currently displaying 601 – 620 of 898