Previous Page 3

Displaying 41 – 49 of 49

Showing per page

Existence of solutions to nonlinear advection-diffusion equation applied to Burgers' equation using Sinc methods

Kamel Al-Khaled (2014)

Applications of Mathematics

This paper has two objectives. First, we prove the existence of solutions to the general advection-diffusion equation subject to a reasonably smooth initial condition. We investigate the behavior of the solution of these problems for large values of time. Secondly, a numerical scheme using the Sinc-Galerkin method is developed to approximate the solution of a simple model of turbulence, which is a special case of the advection-diffusion equation, known as Burgers' equation. The approximate solution...

Existence of Waves for a Nonlocal Reaction-Diffusion Equation

I. Demin, V. Volpert (2010)

Mathematical Modelling of Natural Phenomena

In this work we study a nonlocal reaction-diffusion equation arising in population dynamics. The integral term in the nonlinearity describes nonlocal stimulation of reproduction. We prove existence of travelling wave solutions by the Leray-Schauder method using topological degree for Fredholm and proper operators and special a priori estimates of solutions in weighted Hölder spaces.

Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics

Marzia Bisi, Laurent Desvillettes, Giampiero Spiga (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We show that the entropy method, that has been used successfully in order to prove exponential convergence towards equilibrium with explicit constants in many contexts, among which reaction-diffusion systems coming out of reversible chemistry, can also be used when one considers a reaction-diffusion system corresponding to an irreversible mechanism of dissociation/recombination, for which no natural entropy is available.

Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics

Marzia Bisi, Laurent Desvillettes, Giampiero Spiga (2008)

ESAIM: Mathematical Modelling and Numerical Analysis


We show that the entropy method, that has been used successfully in order to prove exponential convergence towards equilibrium with explicit constants in many contexts, among which reaction-diffusion systems coming out of reversible chemistry, can also be used when one considers a reaction-diffusion system corresponding to an irreversible mechanism of dissociation/recombination, for which no natural entropy is available.


Currently displaying 41 – 49 of 49

Previous Page 3