Displaying 61 – 80 of 416

Showing per page

Behaviour of the support of the solution appearing in some nonlinear diffusion equation with absorption

Tomoeda, Kenji (2017)

Proceedings of Equadiff 14

Numerical experiments suggest interesting properties in the several fields of fluid dynamics, plasma physics and population dynamics. Among such properties, we may observe the interesting phenomena; that is, the repeated appearance and disappearance phenomena of the region penetrated by the fluid in the flow through a porous media with absorption. The model equation in two dimensional space is written in the form of the initial-boundary value problem for a nonlinear diffusion equation with the effect...

Blow-up of a nonlocal p-Laplacian evolution equation with critical initial energy

Yang Liu, Pengju Lv, Chaojiu Da (2016)

Annales Polonici Mathematici

This paper is concerned with the initial boundary value problem for a nonlocal p-Laplacian evolution equation with critical initial energy. In the framework of the energy method, we construct an unstable set and establish its invariance. Finally, the finite time blow-up of solutions is derived by a combination of the unstable set and the concavity method.

Blow-up of solutions for the non-Newtonian polytropic filtration equation with a generalized source

Jun Zhou (2016)

Annales Polonici Mathematici

This paper deals with the blow-up properties of the non-Newtonian polytropic filtration equation u t - d i v ( | u m | p - 2 u m ) = f ( u ) with homogeneous Dirichlet boundary conditions. The blow-up conditions, upper and lower bounds of the blow-up time, and the blow-up rate are established by using the energy method and differential inequality techniques.

Boundary estimates for certain degenerate and singular parabolic equations

Benny Avelin, Ugo Gianazza, Sandro Salsa (2016)

Journal of the European Mathematical Society

We study the boundary behavior of non-negative solutions to a class of degenerate/singular parabolic equations, whose prototype is the parabolic p -Laplacian equation. Assuming that such solutions continuously vanish on some distinguished part of the lateral part S T of a Lipschitz cylinder, we prove Carleson-type estimates, and deduce some consequences under additional assumptions on the equation or the domain. We then prove analogous estimates for non-negative solutions to a class of degenerate/singular...

Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena

José M. Arrieta, Anibal Rodriguez-Bernal, Philippe Souplet (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider a one-dimensional semilinear parabolic equation with a gradient nonlinearity. We provide a complete classification of large time behavior of the classical solutions u : either the space derivative u x blows up in finite time (with u itself remaining bounded), or u is global and converges in C 1 norm to the unique steady state. The main difficulty is to prove C 1 boundedness of all global solutions. To do so, we explicitly compute a nontrivial Lyapunov functional by carrying out the method of...

Chemotaxis models with a threshold cell density

Dariusz Wrzosek (2008)

Banach Center Publications

We consider a quasilinear parabolic system which has the structure of Patlak-Keller-Segel model of chemotaxis and contains a class of models with degenerate diffusion. A cell population is described in terms of volume fraction or density. In the latter case, it is assumed that there is a threshold value which the density of cells cannot exceed. Existence and uniqueness of solutions to the corresponding initial-boundary value problem and existence of space inhomogeneous stationary solutions are discussed....

Classification des solutions d’un problème elliptique fortement non linéaire

A. Benaouda, A. Gmira, B. Hamri (2005)

Annales mathématiques Blaise Pascal

On étudie la classification des solutions du problème elliptique ( u p - 2 u ) ( t ) + u q - 1 u ( t ) - f ( t ) u m - 1 u ( t ) = 0 , t > 0 , q > 1 , p m + 1 > 2 et f une fonction changeant de signe. En utilisant une méthode de tire, On montre qu’en partant avec une dérivée initiale nulle toutes les solutions sont globales. De plus si p > m + 1 et q > ( p - 1 ) ( m + 1 ) / p l’ensemble des solutions est constitué d’une seule solution à support compact et de deux familles de solutions ; celles qui sont strictement positives et celles qui changent de signes. On montre aussi que ces deux familles tendent vers l’infini quand...

Comparative Study of a Solid Film Dewetting in an Attractive Substrate Potentials with the Exponential and the Algebraic Decay

M. Khenner (2008)

Mathematical Modelling of Natural Phenomena

We compare dewetting characteristics of a thin nonwetting solid film in the absence of stress, for two models of a wetting potential: the exponential and the algebraic. The exponential model is a one-parameter (r) model, and the algebraic model is a two-parameter (r, m) model, where r is the ratio of the characteristic wetting length to the height of the unperturbed film, and m is the exponent of h (film height) in a smooth function that interpolates the system's surface energy above and below...

Compétition Réaction-Diffusion et comportement asymptotique d’un problème d’obstacle doublement non linéaire

Fahd Karami (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Le but de cet article est l’étude de la compétition Réaction-Diffusion pour un problème de type β ( w ) t - d ε div a ( x , D w ) + r ε g x , β ( w ) = f , a est un opérateur de Lerray-Lions, β est une fonction continue croissante et la réaction g est une fonction croissante qui dépend de l’espace x . On suppose que les coefficients de diffusion d ε et de Réaction r ε dépendent du paramètre ε avec d ε et/ou r ε tends vers + lorsque ε 0 . Dans le cas où, le coefficient de réaction est très rapide, nous étudions le comportement asymptotique lorsque t de la solution...

Currently displaying 61 – 80 of 416