Displaying 301 – 320 of 491

Showing per page

An explicit modified method of characteristics for the one-dimensional nonstationary convection-diffusion problem with dominating convection

Josef Dalík, Helena Růžičková (1995)

Applications of Mathematics

We describe a numerical method for the equation u t + p u x - ε u x x = f in ( 0 , 1 ) × ( 0 , T ) with Dirichlet boundary and initial conditions which is a combination of the method of characteristics and the finite-difference method. We prove both an a priori local error-estimate of a high order and stability. Example 3.3 indicates that our approximate solutions are disturbed only by a minimal amount of the artificial diffusion.

An extension of Rothe's method to non-cylindrical domains

Komil Kuliev, Lars-Erik Persson (2007)

Applications of Mathematics

In this paper Rothe’s classical method is extended so that it can be used to solve some linear parabolic boundary value problems in non-cylindrical domains. The corresponding existence and uniqueness theorems are proved and some further results and generalizations are discussed and applied.

An IMEX scheme for reaction-diffusion equations: application for a PEM fuel cell model

István Faragó, Ferenc Izsák, Tamás Szabó, Ákos Kriston (2013)

Open Mathematics

An implicit-explicit (IMEX) method is developed for the numerical solution of reaction-diffusion equations with pure Neumann boundary conditions. The corresponding method of lines scheme with finite differences is analyzed: explicit conditions are given for its convergence in the ‖·‖∞ norm. The results are applied to a model for determining the overpotential in a proton exchange membrane (PEM) fuel cell.

An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations

Éric Boillat (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we consider the initial value problem which is obtained after a space discretization (with space step h ) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size h chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between h and the time step size...

An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations

Éric Boillat (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we consider the initial value problem which is obtained after a space discretization (with space step h) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size h chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between h and the time...

An integrodifferential approach to modeling, control, state estimation and optimization for heat transfer systems

Andreas Rauh, Luise Senkel, Harald Aschemann, Vasily V. Saurin, Georgy V. Kostin (2016)

International Journal of Applied Mathematics and Computer Science

In this paper, control-oriented modeling approaches are presented for distributed parameter systems. These systems, which are in the focus of this contribution, are assumed to be described by suitable partial differential equations. They arise naturally during the modeling of dynamic heat transfer processes. The presented approaches aim at developing finitedimensional system descriptions for the design of various open-loop, closed-loop, and optimal control strategies as well as state, disturbance,...

Currently displaying 301 – 320 of 491