Generic behaviour of one-dimensional blow up patterns
In this paper we describe PDELab, an extensible C++ template library for finite element methods based on the Distributed and Unified Numerics Environment (Dune). PDELab considerably simplifies the implementation of discretization schemes for systems of partial differential equations by setting up global functions and operators from a simple element-local description. A general concept for incorporation of constraints eases the implementation of essential boundary conditions, hanging nodes and varying...
A general approach was proposed in this article to develop high-order exponentially fitted basis functions for finite element approximations of multi-dimensional drift-diffusion equations for modeling biomolecular electrodiffusion processes. Such methods are highly desirable for achieving numerical stability and efficiency. We found that by utilizing the one-to-one correspondence between the continuous piecewise polynomial space of degree k + 1 and the divergencefree vector space of degree k, one...
The paper deals with positive solutions of a nonlocal and degenerate quasilinear parabolic system not in divergence form with null Dirichlet boundary conditions. By using the standard approximation method, we first give a series of fine a priori estimates for the solution of the corresponding approximate problem. Then using the diagonal method, we get the local existence and the bounds of the solution to this problem. Moreover, a necessary and sufficient condition for the non-global existence...
In this paper several models in virus dynamics with and without immune response are discussed concerning asymptotic behaviour. The case of immobile cells but diffusing viruses and T-cells is included. It is shown that, depending on the value of the basic reproductive number R0 of the virus, the corresponding equilibrium is globally asymptotically stable. If R0 < 1 then the virus-free equilibrium has this property, and in case R0 > 1 there is a unique disease equilibrium which takes over this...
In this paper, we discuss the special diffusive hematopoiesis model with Neumann boundary condition. Sufficient conditions are provided for the global attractivity and oscillation of the equilibrium for Eq. (*), by using a new theorem we stated and proved. When P(t, χ) does not depend on a spatial variable χ ∈ Ω, these results are also true and extend or complement existing results. Finally, existence and stability of the Hopf bifurcation for Eq. (*) are studied.
We prove the existence of a compact connected global attractor for a class of abstract semilinear parabolic equations with infinite delay.
This paper is concerned with a fourth-order parabolic equation which models epitaxial growth of nanoscale thin films. Based on the regularity estimates for semigroups and the classical existence theorem of global attractors, we prove that the fourth order parabolic equation possesses a global attractor in a subspace of H², which attracts all the bounded sets of H² in the H²-norm.
This paper is concerned with the convective Cahn-Hilliard equation. We use a classical theorem on existence of a global attractor to derive that the convective Cahn-Hilliard equation possesses a global attractor on some subset of H².
We consider the convective Cahn-Hilliard equation with periodic boundary conditions. Based on the iteration technique for regularity estimates and the classical theorem on existence of a global attractor, we prove that the convective Cahn-Hilliard equation has a global attractor in .
We prove the existence of global attractors for the following semilinear degenerate parabolic equation on : ∂u/∂t - div(σ(x)∇ u) + λu + f(x,u) = g(x), under a new condition concerning the variable nonnegative diffusivity σ(·) and for an arbitrary polynomial growth order of the nonlinearity f. To overcome some difficulties caused by the lack of compactness of the embeddings, these results are proved by combining the tail estimates method and the asymptotic a priori estimate method.
L'esistenza di attrattori globali per equazioni paraboliche semilineari è stata estensivamente studiata da molti autori mentre il caso quasilineare è stato meno considerato e ancora esistono molti problemi aperti. L'obiettivo di questo lavoro è di studiare, da un punto di vista astratto, l'esistenza di attrattori globali per equazioni paraboliche quasilineari con parte principale monotona. I risultati ottenuti vengono applicati a problemi parabolici degeneri del secondo ordine e di ordine superiore....