Displaying 21 – 40 of 73

Showing per page

Influence of diffusion on interactions between malignant gliomas and immune system

Urszula Foryś (2010)

Applicationes Mathematicae

We analyse the influence of diffusion and space distribution of cells in a simple model of interactions between an activated immune system and malignant gliomas, among which the most aggressive one is GBM Glioblastoma Multiforme. It turns out that diffusion cannot affect stability of spatially homogeneous steady states. This suggests that there are two possible outcomes-the solution is either attracted by the positive steady state or by the semitrivial one. The semitrivial steady state describes...

Influence of Vibrations on Convective Instability of Reaction Fronts in Liquids

K. Allali, F. Bikany, A. Taik, V. Volpert (2010)

Mathematical Modelling of Natural Phenomena

Propagation of polymerization fronts with liquid monomer and liquid polymer is considered and the influence of vibrations on critical conditions of convective instability is studied. The model includes the heat equation, the equation for the concentration and the Navier-Stokes equations considered under the Boussinesq approximation. Linear stability analysis of the problem is fulfilled, and the convective instability boundary is found depending on...

Influence of Vibrations on Convective Instability of Reaction Fronts in Porous Media

H. Aatif, K. Allali, K. El Karouni (2010)

Mathematical Modelling of Natural Phenomena

The aim of this paper is to study the effect of vibrations on convective instability of reaction fronts in porous media. The model contains reaction-diffusion equations coupled with the Darcy equation. Linear stability analysis is carried out and the convective instability boundary is found. The results are compared with direct numerical simulations.

Inhomogeneous Fractional Diffusion Equations

Baeumer, Boris, Kurita, Satoko, Meerschaert, Mark (2005)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: Primary 26A33; Secondary 35S10, 86A05Fractional diffusion equations are abstract partial differential equations that involve fractional derivatives in space and time. They are useful to model anomalous diffusion, where a plume of particles spreads in a different manner than the classical diffusion equation predicts. An initial value problem involving a space-fractional diffusion equation is an abstract Cauchy problem, whose analytic solution can be written...

Inhomogeneous parabolic Neumann problems

Robin Nittka (2014)

Czechoslovak Mathematical Journal

Second order parabolic equations on Lipschitz domains subject to inhomogeneous Neumann (or, more generally, Robin) boundary conditions are studied. Existence and uniqueness of weak solutions and their continuity up to the boundary of the parabolic cylinder are proved using methods from the theory of integrated semigroups, showing in particular the well-posedness of the abstract Cauchy problem in spaces of continuous functions. Under natural assumptions on the coefficients and the inhomogeneity the...

Instability of Turing type for a reaction-diffusion system with unilateral obstacles modeled by variational inequalities

Martin Väth (2014)

Mathematica Bohemica

We consider a reaction-diffusion system of activator-inhibitor type which is subject to Turing's diffusion-driven instability. It is shown that unilateral obstacles of various type for the inhibitor, modeled by variational inequalities, lead to instability of the trivial solution in a parameter domain where it would be stable otherwise. The result is based on a previous joint work with I.-S. Kim, but a refinement of the underlying theoretical tool is developed. Moreover, a different regime of parameters...

Currently displaying 21 – 40 of 73