Displaying 41 – 60 of 74

Showing per page

Modeling Non-Stationary Processes of Diffusion of Solute Substances in the Near-Bottom Layer ofWater Reservoirs: Variation of the Direction of Flows and Assessment of Admissible Biogenic Load

V. V. Kozlov (2009)

Mathematical Modelling of Natural Phenomena

The paper is devoted to mathematical modelling and numerical computations of a nonstationary free boundary problem. The model is based on processes of molecular diffusion of some products of chemical decomposition of a solid organic substance concentrated in bottom sediments. It takes into account non-stationary multi-component and multi-stage chemical decomposition of organic substances and the processes of sorption desorption under aerobic and anaerobic conditions. Such a model allows one to...

Modeling Spatial Effects in Early Carcinogenesis : Stochastic Versus Deterministic Reaction-Diffusion Systems

R. Bertolusso, M. Kimmel (2012)

Mathematical Modelling of Natural Phenomena

We consider the early carcinogenesis model originally proposed as a deterministic reaction-diffusion system. The model has been conceived to explore the spatial effects stemming from growth regulation of pre-cancerous cells by diffusing growth factor molecules. The model exhibited Turing instability producing transient spatial spikes in cell density, which might be considered a model counterpart of emerging foci of malignant cells. However, the process...

Modelling and Mathematical Analysis of the Glass Eel Migration in the Adour River Estuary

M. Odunlami, G. Vallet (2012)

Mathematical Modelling of Natural Phenomena

In this paper we are interested in a mathematical model of migration of grass eels in an estuary. We first revisit a previous model proposed by O. Arino and based on a degenerate convection-diffusion equation of parabolic-hyperbolic type with time-varying subdomains. Then, we propose an adapted mathematical framework for this model, we prove a result of existence of a weak solution and we propose some numerical simulations.

Modelling bioremediation of polluted soils in unsaturated condition and its effect on the soil hydraulic properties

Iacopo Borsi, Angiolo Farina, Antonio Fasano, Mario Primicerio (2008)

Applications of Mathematics

We study the unsaturated flow of an incompressible liquid carrying a bacterial population through a porous medium contaminated with some pollutant. The biomass grows feeding on the pollutant and affecting at the same time all the physics of the flow. We formulate a mathematical model in a one-dimensional setting and we prove an existence theorem for it. The so-called fluid media scaling approach, often used in the literature, is discussed and its limitations are pointed out on the basis of a specific...

Modelling of convective phenomena in forest fire.

M.ª Isabel Asensio, Luis Ferragut, Jacques Simon (2002)

RACSAM

We present a model coupling the fire propagation equations in a bidimensional domain representing the surface, and the air movement equations in a three dimensional domain representing an air layer. As the air layer thickness is small compared with its length, an asymptotic analysis gives a three dimensional convective model governed by a bidimensional equation verified by a stream function. We also present the numerical simulations of these equations.

Modelling of Plant Growth with Apical or Basal Meristem

N. Bessonov, F. Crauste, V. Volpert (2011)

Mathematical Modelling of Natural Phenomena

Plant growth occurs due to cell proliferation in the meristem. We model the case of apical meristem specific for branch growth and the case of basal meristem specific for bulbous plants and grass. In the case of apical growth, our model allows us to describe the variety of plant forms and lifetimes, endogenous rhythms and apical domination. In the case of basal growth, the spatial structure, which corresponds to the appearance of leaves, results...

Models of Self-Organizing Bacterial Communities and Comparisons with Experimental Observations

A. Marrocco, H. Henry, I. B. Holland, M. Plapp, S. J. Séror, B. Perthame (2010)

Mathematical Modelling of Natural Phenomena

Bacillus subtilis swarms rapidly over the surface of a synthetic medium creating remarkable hyperbranched dendritic communities. Models to reproduce such effects have been proposed under the form of parabolic Partial Differential Equations representing the dynamics of the active cells (both motile and multiplying), the passive cells (non-motile and non-growing) and nutrient concentration. We test the numerical behavior of such models and compare...

Monotone iteration for infinite systems of parabolic equations with functional dependence

Anna Pudełko (2007)

Annales Polonici Mathematici

We consider the initial value problem for an infinite system of differential-functional equations of parabolic type. General operators of parabolic type of second order with variable coefficients are considered and the system is weakly coupled. The solutions are obtained by the monotone iterative method. We prove theorems on weak partial differential-functional inequalities as well the existence and uniqueness theorems in the class of continuous bounded functions and in the class of functions satisfying...

Motion by curvature of planar networks

Carlo Mantegazza, Matteo Novaga, Vincenzo Maria Tortorelli (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider the motion by curvature of a network of smooth curves with multiple junctions in the plane, that is, the geometric gradient flow associated to the length functional. Such a flow represents the evolution of a two–dimensional multiphase system where the energy is simply the sum of the lengths of the interfaces, in particular it is a possible model for the growth of grain boundaries. Moreover, the motion of these networks of curves is the simplest example of curvature flow for sets which...

Currently displaying 41 – 60 of 74