On a regularizing effect of Schrödinger type groups
Most non-trivial existence and convergence results for systems of partial differential equations of evolution exclude or avoid the case of a non-symmetrical parabolic part. Therefore such systems, generated by the physical analysis of the processes of transfer of heat and moisture in porous media, cannot be analyzed easily using the standard results on the convergence of Rothe sequences (e.g. those of W. Jäger and J. Kačur). In this paper the general variational formulation of the corresponding...
We consider the parabolic equation (P) , (t,x) ∈ ℝ₊ × ℝⁿ, and the corresponding semiflow π in the phase space H¹. We give conditions on the nonlinearity F(x,u), ensuring that all bounded sets of H¹ are π-admissible in the sense of Rybakowski. If F(x,u) is asymptotically linear, under appropriate non-resonance conditions, we use Conley’s index theory to prove the existence of nontrivial equilibria of (P) and of heteroclinic trajectories joining some of these equilibria. The results obtained extend...
In this paper, a nonlinear backward heat problem with time-dependent coefficient in the unbounded domain is investigated. A modified regularization method is established to solve it. New error estimates for the regularized solution are given under some assumptions on the exact solution.
An optimal control problem governed by a quasilinear parabolic equation with additional constraints is investigated. The optimal control problem is converted to an optimization problem which is solved using a penalty function technique. The existence and uniqueness theorems are investigated. The derivation of formulae for the gradient of the modified function is explainedby solving the adjoint problem.
This work is concerned with the inverse problem of determining initial value of the Cauchy problem for a nonlinear diffusion process with an additional condition on free boundary. Considering the flow of water through a homogeneous isotropic rigid porous medium, we have such desire: for every given positive constants and , to decide the initial value such that the solution satisfies , where . In this paper, we first establish a priori estimate and a more precise Poincaré type inequality...
Let be a transition semigroup of the Hilbert space-valued nonsymmetric Ornstein-Uhlenbeck process and let denote its Gaussian invariant measure. We show that the semigroup is analytic in if and only if its generator is variational. In particular, we show that the transition semigroup of a finite dimensional Ornstein-Uhlenbeck process is analytic if and only if the Wiener process is nondegenerate.