Loading [MathJax]/extensions/MathZoom.js
Displaying 41 –
60 of
111
We consider an initial-boundary problem for a sixth order nonlinear parabolic equation, which arises in oil-water-surfactant mixtures. Using Schauder type estimates and Campanato spaces, we prove the global existence of classical solutions for the problem in two space dimensions.
The main object of this paper is to study the regularity with respect to the parameter h of solutions of the problem , . The continuity of u with respect to both h and t has been considered in [6].
We study a porous medium equation with nonlocal diffusion effects given by an inverse fractional Laplacian operator. The precise model is . The problem is posed in with nonnegative initial data that are integrable and decay at infinity. A previous paper has established the existence of mass-preserving, nonnegative weak solutions satisfying energy estimates and finite propagation. As main results we establish the boundedness and regularity of such weak solutions. Finally, we extend the existence...
We prove a Sobolev and a Morrey type inequality involving the mean curvature and the tangential gradient with respect to the level sets of the function that appears in the inequalities. Then, as an application, we establish a priori estimates for semistable solutions of in a smooth bounded domain . In particular, we obtain new and bounds for the extremal solution when the domain is strictly convex. More precisely, we prove that if and if .
Partial regularity of solutions to a class of second order nonlinear parabolic systems with non-smooth in time principal matrices is proved in the paper. The coefficients are assumed to be measurable and bounded in the time variable and VMO-smooth in the space variables uniformly with respect to time. To prove the result, we apply the so-called -caloric approximation method. The method was applied by the authors earlier to study regularity of quasilinear systems.
Currently displaying 41 –
60 of
111