Small diffusion and fast dying out asymptotics for superprocesses as non-Hamiltonian quasiclassics for evolution equations.
We consider in this article diagonal parabolic systems arising in the context of stochastic differential games. We address the issue of finding smooth solutions of the system. Such a regularity result is extremely important to derive an optimal feedback proving the existence of a Nash point of a certain class of stochastic differential games. Unlike in the case of scalar equation, smoothness of solutions is not achieved in general. A special structure of the nonlinear hamiltonian seems to be the...
We consider in this article diagonal parabolic systems arising in the context of stochastic differential games. We address the issue of finding smooth solutions of the system. Such a regularity result is extremely important to derive an optimal feedback proving the existence of a Nash point of a certain class of stochastic differential games. Unlike in the case of scalar equation, smoothness of solutions is not achieved in general. A special structure of the nonlinear Hamiltonian seems to be...
The purpose of this paper is to derive the error estimates for discretization in time of a semilinear parabolic equation in a Banach space. The estimates are given in the norm of the space for when the initial condition is not regular.
In a recent work, E. Cinti and F. Otto established some new interpolation inequalities in the study of pattern formation, bounding the Lr(μ)-norm of a probability density with respect to the reference measure μ by its Sobolev norm and the Kantorovich-Wasserstein distance to μ. This article emphasizes this family of interpolation inequalities, called Sobolev-Kantorovich inequalities, which may be established in the rather large setting of non-negatively curved (weighted) Riemannian manifolds by means...
A number of explicit solutions for the heat equation with a polynomial non-linearity and for the Fisher equation is presented. An extended class of non-linear heat equations admitting solitary wave solutions is described. The generalization of the Fisher equation is proposed whose solutions propagate with arbitrary ad hoc fixed velocity.
Degenerate parabolic variational inequalities with convection are solved by means of a combined relaxation method and method of characteristics. The mathematical problem is motivated by Richard’s equation, modelling the unsaturated – saturated flow in porous media. By means of the relaxation method we control the degeneracy. The dominance of the convection is controlled by the method of characteristics.
Degenerate parabolic variational inequalities with convection are solved by means of a combined relaxation method and method of characteristics. The mathematical problem is motivated by Richard's equation, modelling the unsaturated – saturated flow in porous media. By means of the relaxation method we control the degeneracy. The dominance of the convection is controlled by the method of characteristics.