Displaying 141 – 160 of 178

Showing per page

Convergence to the travelling wave solution for a nonlinear reaction-diffusion equation

Shoshana Kamin, Philip Rosenau (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We study the behaviour of the solutions of the Cauchy problem u t = u m x x + u 1 - u m - 1 , x R , t > 0 u 0 , x = u 0 x , u 0 x 0 , and prove that if initial data u 0 x decay fast enough at infinity then the solution of the Cauchy problem approaches the travelling wave solution spreading either to the right or to the left, or two travelling waves moving in opposite directions. Certain generalizations are also mentioned.

Convergent semidiscretization of a nonlinear fourth order parabolic system

Ansgar Jüngel, René Pinnau (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.

Convergent semidiscretization of a nonlinear fourth order parabolic system

Ansgar Jüngel, René Pinnau (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.

Convex domains and unique continuation at the boundary.

Vilhelm Adolfsson, Luis Escauriaza, Carlos Kenig (1995)

Revista Matemática Iberoamericana

We show that a harmonic function which vanishes continuously on an open set of the boundary of a convex domain cannot have a normal derivative which vanishes on a subset of positive surface measure. We also prove a similar result for caloric functions vanishing on the lateral boundary of a convex cylinder.

Convexity and uniqueness in a free boundary problem arising in combustion theory.

Arshak Petrosyan (2001)

Revista Matemática Iberoamericana

We consider solutions to a free boundary problem for the heat equation, describing the propagation of flames. Suppose there is a bounded domain Ω ⊂ QT = Rn x (0,T) for some T > 0 and a function u > 0 in Ω such thatut = Δu,    in Ω,u = 0 and |∇u| = 1,   on Γ := ∂Ω ∩ QT,u(·,0) = u0,     on Ω0,where Ω0 is a given domain in Rn and u0 is a positive and continuous function in Ω0, vanishing on ∂Ω0. If Ω0 is convex and u0 is concave in Ω0, then we show that (u,Ω) is unique and the time sections...

Corrector results for a parabolic problem with a memory effect

Patrizia Donato, Editha C. Jose (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this paper is to provide the correctors associated to the homogenization of a parabolic problem describing the heat transfer. The results here complete the earlier study in [Jose, Rev. Roumaine Math. Pures Appl.54 (2009) 189–222] on the asymptotic behaviour of a problem in a domain with two components separated by an ε-periodic interface. The physical model established in [Carslaw and Jaeger, The Clarendon Press, Oxford (1947)] prescribes on the interface the condition that the flux...

Currently displaying 141 – 160 of 178