Certaines propriétés solutions non négatives d'un système parabolique d'équations
We present a reduced basis offline/online procedure for viscous Burgers initial boundary value problem, enabling efficient approximate computation of the solutions of this equation for parametrized viscosity and initial and boundary value data. This procedure comes with a fast-evaluated rigorous error bound certifying the approximation procedure. Our numerical experiments show significant computational savings, as well as efficiency of the error bound.
Let be a positive number or . We characterize all subsets of such that for every positive parabolic function on in terms of coparabolic (minimal) thinness of the set , where and is the “heat ball” with the “center” and radius . Examples of different types of sets which can be used instead of “heat balls” are given. It is proved that (i) is equivalent to the condition for every bounded parabolic function on and hence to all equivalent conditions given in the article [7]....
We deal in this Note with linear parabolic (in sense of Petrovskij) systems of order with discontinuous principal coefficients belonging to . By means of a priori estimates in Sobolev-Morrey spaces we give a precise characterization of the Morrey, BMO and Hölder regularity of the solutions and their derivatives up to order .
We consider a quasilinear parabolic system which has the structure of Patlak-Keller-Segel model of chemotaxis and contains a class of models with degenerate diffusion. A cell population is described in terms of volume fraction or density. In the latter case, it is assumed that there is a threshold value which the density of cells cannot exceed. Existence and uniqueness of solutions to the corresponding initial-boundary value problem and existence of space inhomogeneous stationary solutions are discussed....
Abstract. We study a Neumann problem for the heat equation in a cylindrical domain with -base and data in , a subspace of 1. We derive our results, considering the action of an adjoint operator on , a predual of , and using known properties of this last space.
The existence, uniqueness and regularities of the generalized global solutions and classical global solutions to the equation with the initial boundary value conditions or with the initial boundary value conditions are proved. Moreover, the asymptotic behavior of these solutions is considered under some conditions.
Sono dati nuovi teoremi di esistenza per soluzioni regolari di equazioni di evoluzione paraboliche astratte con applicazioni all'equazione del calore in spazi di funzioni holderiane e alle equazioni semilineari.
On étudie la classification des solutions du problème elliptiqueoù et une fonction changeant de signe. En utilisant une méthode de tire, On montre qu’en partant avec une dérivée initiale nulle toutes les solutions sont globales. De plus si et l’ensemble des solutions est constitué d’une seule solution à support compact et de deux familles de solutions ; celles qui sont strictement positives et celles qui changent de signes. On montre aussi que ces deux familles tendent vers l’infini quand...
In this paper, we obtain some existence theorems of nonnegative solutions with compact support for homogeneous Dirichlet elliptic problems; we also extend these results to parabolis systems.Supersolution and comparison principles are our main ingredients.
We study the compactness of Feller semigroups generated by second order elliptic partial differential operators with unbounded coefficients in spaces of continuous functions in .