Loading [MathJax]/extensions/MathZoom.js
We discuss a control problem for the Lamé system which naturally leads to the following uniqueness problem: Given a bounded domain of , are there non-trivial solutions of the evolution Lamé system with homogeneous Dirichlet boundary conditions for which the first two components vanish? We show that such solutions do not exist when the domain is Lipschitz. However, in two space dimensions one can build easily polygonal domains in which there are eigenvibrations with the first component being identically...
On considère l’équation des ondes sur un rectangle avec un feedback de type Dirichlet. On se place dans le cas où la condition de contrôle géométrique n’est pas satisfaite (BLR Condition), ce qui implique qu’on n’a pas stabilité exponentielle dans l’espace d’énérgie. On prouve qu’on peut trouver un sous espace de l’espace d’énergie tel qu’on a stabilité exponentielle. De plus, on montre un résultat de décroissance polynomiale pour toute donnée initiale régulière.
We consider here the Interior Penalty Discontinuous Galerkin (IPDG) discretization of the wave equation. We show how to derive the optimal penalization parameter involved in this method in the case of regular meshes. Moreover, we provide necessary stability conditions of the global scheme when IPDG is coupled with the classical Leap–Frog scheme for the time discretization. Numerical experiments illustrate the fact that these conditions are also sufficient.
We consider abstract second order evolution equations with unbounded
feedback with delay. Existence results are obtained under some
realistic assumptions. Sufficient and explicit conditions are derived that guarantee the exponential or polynomial stability. Some new examples that enter into our abstract framework are presented.
Motivated by several works on the stabilization of the oscillator by on-off feedbacks, we study the related problem for the one-dimensional wave equation, damped by an on-off feedback . We obtain results that are radically different from those known in the case of the oscillator. We consider periodic functions : typically is equal to on , equal to on and is -periodic. We study the boundary case and next the locally distributed case, and we give optimal results of stability. In both cases,...
Motivated by several works on the stabilization of the oscillator by
on-off feedbacks, we study the related problem for the one-dimensional wave equation, damped
by an on-off feedback .
We obtain results that are radically different from those known in the case
of the oscillator. We consider periodic functions a: typically
a is equal to 1 on (0,T),
equal to 0 on (T, qT) and is qT-periodic.
We study the boundary case and next the locally distributed case,
and we give optimal results of stability....
Currently displaying 21 –
31 of
31