Page 1 Next

Displaying 1 – 20 of 31

Showing per page

Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations

Tanya Christiansen, M. S. Joshi (2003)

Annales de l’institut Fourier

The scattering matrix is defined on a perturbed stratified medium. For a class of perturbations, its main part at fixed energy is a Fourier integral operator on the sphere at infinity. Proving this is facilitated by developing a refined limiting absorption principle. The symbol of the scattering matrix determines the asymptotics of a large class of perturbations.

Semiclassical resolvent estimates at trapped sets

Kiril Datchev, András Vasy (2012)

Annales de l’institut Fourier

We extend our recent results on propagation of semiclassical resolvent estimates through trapped sets when a priori polynomial resolvent bounds hold. Previously we obtained non-trapping estimates in trapping situations when the resolvent was sandwiched between cutoffs χ microlocally supported away from the trapping: χ R h ( E + i 0 ) χ = 𝒪 ( h - 1 ) , a microlocal version of a result of Burq and Cardoso-Vodev. We now allow one of the two cutoffs, χ ˜ , to be supported at the trapped set, giving χ R h ( E + i 0 ) χ ˜ = 𝒪 ( a ( h ) h - 1 ) when the a priori bound is χ ˜ R h ( E + i 0 ) χ ˜ = 𝒪 ( a ( h ) h - 1 ) .

Solutions globales de l’équation des ondes semi-linéaire critique à coefficients variables

Slim Ibrahim, Mohamed Majdoub (2003)

Bulletin de la Société Mathématique de France

Dans ce travail, on s’intéresse à l’existence globale de solutions classiques et au sens de Shatah-Struwe de l’équation des ondes critique à coefficients variables en dimension d d’espace A u + | u | 4 / ( d - 2 ) u = t 2 u - div ( A ( x ) · x u ) + | u | 4 / ( d - 2 ) u = 0 , t × x d , A est une fonction régulière à valeurs dans les matrices d × d définies positives, valant l’identité en dehors d’un compact fixe.

Some decay properties for the damped wave equation on the torus

Nalini Anantharaman, Matthieu Léautaud (2012)

Journées Équations aux dérivées partielles

This article is a proceedings version of the ongoing work [1], and has been the object of a talk of the second author during the Journées “Équations aux Dérivées Partielles” (Biarritz, 2012).We address the decay rates of the energy of the damped wave equation when the damping coefficient b does not satisfy the Geometric Control Condition (GCC). First, we give a link with the controllability of the associated Schrödinger equation. We prove that the observability of the Schrödinger group implies that...

Some new error estimates for finite element methods for second order hyperbolic equations using the Newmark method

Abdallah Bradji, Jürgen Fuhrmann (2014)

Mathematica Bohemica

We consider a family of conforming finite element schemes with piecewise polynomial space of degree k in space for solving the wave equation, as a model for second order hyperbolic equations. The discretization in time is performed using the Newmark method. A new a priori estimate is proved. Thanks to this new a priori estimate, it is proved that the convergence order of the error is h k + τ 2 in the discrete norms of ( 0 , T ; 1 ( Ω ) ) and 𝒲 1 , ( 0 , T ; 2 ( Ω ) ) , where h and τ are the mesh size of the spatial and temporal discretization, respectively....

Currently displaying 1 – 20 of 31

Page 1 Next