Méthode de Glimm et problème mixte
We consider supersonic compressible vortex sheets for the isentropic Euler equations of gas dynamics in two space dimensions. The problem is a free boundary nonlinear hyperbolic problem with two main difficulties: the free boundary is characteristic, and the so-called Lopatinskii condition holds only in a weak sense, which yields losses of derivatives. Nevertheless, we prove the local existence of such piecewise smooth solutions to the Euler equations. Since the a priori estimates for the linearized...
Local existence of generalized solutions to nonlocal problems for nonlinear functional partial differential equations of first order is investigated. The proof is based on the bicharacteristics and successive approximations methods.
In this paper we introduce a coupled systems of kinetic equations for the linearized Carleman model. We then study the existence theory and the asymptotic behaviour of the resulting coupled problem. In order to solve the coupled problem we propose to use the time marching algorithm. We then develop a convergence theory for the resulting algorithm. Numerical results confirming the theory are then presented.
A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.
A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.
We consider a body immersed in a perfect gas and moving under the action of a constant force. Body and gas are in thermal equilibrium. We assume a stochastic interaction body/medium: when a particle of the medium hits the body, it is absorbed and immediately re-emitted with a Maxwellian distribution. This system gives rise to a microscopic model of friction. We study the approach of the body velocity V(t) to the limiting velocity and prove that, under suitable smallness assumptions, the approach...
The aspects of symmetrization of hyperbolic equations which will be considered in this review have their own history and are related to some classical results from other areas of mathematics ([12]). Here symmetrization means representation of an initial system of equations in the form of a symmetric t-hyperbolic system in the sense of Friedrichs. Some equations of mathematical physics, for example, the equations of acoustics, of gas dynamics, etc. already have this form. In the 70's S. K. Godunov...
Ce travail concerne le problème de Cauchy-Dirichlet pour des systèmes hyperboliques semilinéaires multidimensionnels perturbés par une “petite viscosité". Les solutions considérées sont et locales en temps, le but étant de décrire le comportement de la solution lorsque le paramètre de viscosité () tend vers zéro. Il s’agit d’un problème de perturbation singulière pour lequel une “couche limite" se forme au voisinage du bord. Par des méthodes inspirées de l’optique géométrique non linéaire, nous...
Ce travail est consacré à l’étude du problème mixte linéaire pour un système non caractéristique, strictement hyperbolique, de degré 1, dans le cas où la condition aux limites présente un saut sur une hypersurface non caractéristique du bord. Sous la condition de Lopatinski uniforme hors de cette hypersurface et sous une hypothèse supplémentaire le long de celle-ci, on prouve un résultat d’existence et d’unicité dans l’espace de Sobolev . On étudie ensuite la propagation de la régularité conormale...