Displaying 41 – 60 of 102

Showing per page

Nonlinear compressible vortex sheets in two space dimensions

Jean-François Coulombel, Paolo Secchi (2008)

Annales scientifiques de l'École Normale Supérieure

We consider supersonic compressible vortex sheets for the isentropic Euler equations of gas dynamics in two space dimensions. The problem is a free boundary nonlinear hyperbolic problem with two main difficulties: the free boundary is characteristic, and the so-called Lopatinskii condition holds only in a weak sense, which yields losses of derivatives. Nevertheless, we prove the local existence of such piecewise smooth solutions to the Euler equations. Since the a priori estimates for the linearized...

Numerical analysis of coupling for a kinetic equation

Moulay Tidriri (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we introduce a coupled systems of kinetic equations for the linearized Carleman model. We then study the existence theory and the asymptotic behaviour of the resulting coupled problem. In order to solve the coupled problem we propose to use the time marching algorithm. We then develop a convergence theory for the resulting algorithm. Numerical results confirming the theory are then presented.

Numerical approximation of the inviscid 3D primitive equations in a limited domain

Qingshan Chen, Ming-Cheng Shiue, Roger Temam, Joseph Tribbia (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.

Numerical approximation of the inviscid 3D primitive equations in a limited domain

Qingshan Chen, Ming-Cheng Shiue, Roger Temam, Joseph Tribbia (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.

On the motion of a body in thermal equilibrium immersed in a perfect gas

Kazuo Aoki, Guido Cavallaro, Carlo Marchioro, Mario Pulvirenti (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a body immersed in a perfect gas and moving under the action of a constant force. Body and gas are in thermal equilibrium. We assume a stochastic interaction body/medium: when a particle of the medium hits the body, it is absorbed and immediately re-emitted with a Maxwellian distribution. This system gives rise to a microscopic model of friction. We study the approach of the body velocity V(t) to the limiting velocity V and prove that, under suitable smallness assumptions, the approach...

On the problem of symmetrization of hyperbolic equations

V. Kostin (1992)

Banach Center Publications

The aspects of symmetrization of hyperbolic equations which will be considered in this review have their own history and are related to some classical results from other areas of mathematics ([12]). Here symmetrization means representation of an initial system of equations in the form of a symmetric t-hyperbolic system in the sense of Friedrichs. Some equations of mathematical physics, for example, the equations of acoustics, of gas dynamics, etc. already have this form. In the 70's S. K. Godunov...

Perturbations visqueuses de problèmes mixtes hyperboliques et couches limites

Olivier Guès (1995)

Annales de l'institut Fourier

Ce travail concerne le problème de Cauchy-Dirichlet pour des systèmes hyperboliques semilinéaires multidimensionnels perturbés par une “petite viscosité". Les solutions considérées sont C et locales en temps, le but étant de décrire le comportement de la solution lorsque le paramètre de viscosité ( ϵ > 0 ) tend vers zéro. Il s’agit d’un problème de perturbation singulière pour lequel une “couche limite" se forme au voisinage du bord. Par des méthodes inspirées de l’optique géométrique non linéaire, nous...

Problème mixte hyperbolique avec saut sur la condition aux limites

Jean-Marc Delort (1989)

Annales de l'institut Fourier

Ce travail est consacré à l’étude du problème mixte linéaire pour un système N × N non caractéristique, strictement hyperbolique, de degré 1, dans le cas où la condition aux limites présente un saut sur une hypersurface non caractéristique du bord. Sous la condition de Lopatinski uniforme hors de cette hypersurface et sous une hypothèse supplémentaire le long de celle-ci, on prouve un résultat d’existence et d’unicité dans l’espace de Sobolev H ν ν 0 , 1 2 . On étudie ensuite la propagation de la régularité conormale...

Currently displaying 41 – 60 of 102