Loading [MathJax]/extensions/MathZoom.js
Displaying 361 –
380 of
2233
We design efficient numerical schemes for approximating the MHD equations in multi-dimensions. Numerical approximations must be able to deal with the complex wave structure of the MHD equations and the divergence constraint. We propose schemes based on the genuinely multi-dimensional (GMD) framework of [S. Mishra and E. Tadmor, Commun. Comput. Phys. 9 (2010) 688–710; S. Mishra and E. Tadmor, SIAM J. Numer. Anal. 49 (2011) 1023–1045]. The schemes are formulated in terms of vertex-centered potentials....
We design efficient numerical schemes for approximating the MHD equations in multi-dimensions. Numerical approximations must be able to deal with the complex wave structure of the MHD equations and the divergence constraint. We propose schemes based on the genuinely multi-dimensional (GMD) framework of [S. Mishra and E. Tadmor, Commun. Comput. Phys. 9 (2010) 688–710; S. Mishra and E. Tadmor, SIAM J. Numer. Anal. 49 (2011) 1023–1045]. The schemes are formulated in terms of vertex-centered potentials....
This paper is devoted to the investigation of quasilinear hyperbolic equations of first order with convex and nonconvex hysteresis operator. It is shown that in the nonconvex case the equation, whose nonlinearity is caused by the hysteresis term, has properties analogous to the quasilinear hyperbolic equation of first order. Hysteresis is represented by a functional describing adsorption and desorption on the particles of the substance. An existence result is achieved by using an approximation of...
We study existence, uniqueness, continuous dependence, general decay of solutions of an initial boundary value problem for a viscoelastic wave equation with strong damping and nonlinear memory term. At first, we state and prove a theorem involving local existence and uniqueness of a weak solution. Next, we establish a sufficient condition to get an estimate of the continuous dependence of the solution with respect to the kernel function and the nonlinear terms. Finally, under suitable conditions...
We consider the Cauchy problem for degenerate parabolic equations with variable coefficients. The equation has nonlinear convective term and degenerate diffusion term which depends on the spatial and time variables. In this paper, we prove the continuous dependence for entropy solutions in the space BV to the problem not only initial function but also all coefficients.
In this article we apply the optimal and the robust control theory to the sine-Gordon equation. In our case the control is given by the boundary conditions and we work in a finite time horizon. We present at the beginning the optimal control problem and we derive a necessary condition of optimality and we continue by formulating a robust control problem for which existence and uniqueness of solutions are derived.
In this article we apply the optimal and
the robust control theory to the sine-Gordon equation. In our case
the control is given by the boundary conditions and we work in a finite
time horizon. We present at the beginning the optimal control problem
and we derive a necessary condition of optimality and we continue by
formulating a robust control problem for which existence and uniqueness
of solutions are derived.
This paper focuses on the analytical properties of the
solutions to the continuity equation with non local flow. Our
driving examples are a supply chain model and an equation for the
description of pedestrian flows. To this aim, we prove the well
posedness of weak entropy solutions in a class of equations
comprising these models. Then, under further regularity conditions,
we prove the differentiability of solutions with respect to the
initial datum and characterize this derivative. A necessary
...
This paper focuses on the analytical properties of the
solutions to the continuity equation with non local flow. Our
driving examples are a supply chain model and an equation for the
description of pedestrian flows. To this aim, we prove the well
posedness of weak entropy solutions in a class of equations
comprising these models. Then, under further regularity conditions,
we prove the differentiability of solutions with respect to the
initial datum and characterize this derivative. A necessary
...
We study an initial boundary-value problem for a wave equation with time-dependent sound speed. In the control problem, we wish to determine a sound-speed function which damps the vibration of the system. We consider the case where the sound speed can take on only two values, and propose a simple control law. We show that if the number of modes in the vibration is finite, and none of the eigenfrequencies are repeated, the proposed control law does lead to energy decay. We illustrate the rich behavior...
We study an initial boundary-value problem for a wave
equation with time-dependent sound speed. In the control problem,
we wish to determine a sound-speed function which damps the
vibration of the system. We consider the case where the sound speed can
take on only two values, and propose a simple control law. We show
that if the number of modes in the vibration is finite, and none of
the eigenfrequencies are repeated, the proposed
control law does lead to energy decay. We illustrate the rich behavior
of...
Currently displaying 361 –
380 of
2233