Existence of global solutions to the Cauchy problem for the seminlinear dissipative wave equations.
We revisit the existence problem for shock profiles in quasilinear relaxation systems in the case that the velocity is a characteristic mode, implying that the profile ODE is degenerate. Our result states existence, with sharp rates of decay and distance from the Chapman–Enskog approximation, of small-amplitude quasilinear relaxation shocks. Our method of analysis follows the general approach used by Métivier and Zumbrun in the semilinear case, based on Chapman–Enskog expansion and the macro–micro...
We establish the existence of mild, strong, classical solutions for a class of second order abstract functional differential equations with nonlocal conditions.
We prove the existence of solutions to a differential-functional system which describes a wide class of multi-component populations dependent on their past time and state densities and on their total size. Using two different types of the Hale operator, we incorporate in this model classical von Foerster-type equations as well as delays (past time dependence) and integrals (e.g. influence of a group of species).
This paper has two objectives. First, we prove the existence of solutions to the general advection-diffusion equation subject to a reasonably smooth initial condition. We investigate the behavior of the solution of these problems for large values of time. Secondly, a numerical scheme using the Sinc-Galerkin method is developed to approximate the solution of a simple model of turbulence, which is a special case of the advection-diffusion equation, known as Burgers' equation. The approximate solution...