Numerical analysis of Stokes equations with improved LBB dependency.
We consider a special configuration of vorticity that consists of a pair of externally tangent circular vortex sheets, each having a circularly symmetric core of bounded vorticity concentric to the sheet, and each core precisely balancing the vorticity mass of the sheet. This configuration is a stationary weak solution of the 2D incompressible Euler equations. We propose to perform numerical experiments to verify that certain approximations of this flow configuration converge to a non-stationary...
Modeling the movement of a rigid particle in viscous fluid is a problem physicists and mathematicians have tried to solve since the beginning of this century. A general model for an ellipsoidal particle was first published by Jeffery in the twenties. We exploit the fact that Jeffery was concerned with formulae which can be used to compute numerically the velocity field in the neighborhood of the particle during his derivation of equations of motion of the particle. This is our principal contribution...
We introduce in this paper some elements for the mathematical and numerical analysis of algebraic turbulence models for oceanic surface mixing layers. In these models the turbulent diffusions are parameterized by means of the gradient Richardson number, that measures the balance between stabilizing buoyancy forces and destabilizing shearing forces. We analyze the existence and linear exponential asymptotic stability of continuous and discrete equilibria states. We also analyze the well-posedness...
This work deals with the numerical solution of generalized Newtonian and Oldroyd-B fluids flow. The governing system of equations is based on the system of balance laws for mass and momentum for incompressible laminar viscous and viscoelastic fluids. Two different definition of the stress tensor are considered. For viscous case Newtonian model is used. For the viscoelastic case Oldroyd-B model is tested. Both presented models can be generalized. In this case the viscosity is defined as a shear rate...
The paper deals with numerical solution of internal flow problems. It mentions a long tradition of mathematical modeling of internal flow, especially transonic flow at our department. Several models of flow based on potential equation, Euler equations, Navier-Stokes and Reynolds averaged Navier-Stokes equations with proper closure are considered. Some mathematical and numerical properties of the model are mentioned and numerical results achieved by in-house developed methods are presented.
In this paper, we prove that the regularity property, in the sense of Gehring-Giaquinta-Modica, holds for weak solutions to non-stationary Stokes type equations. For the construction of solutions, Rothe's scheme is adopted by way of introducing variational functionals and of making use of their minimizers. Local estimates are carried out for time-discrete approximate solutions to achieve the higher integrability. These estimates for gradients do not depend on approximation.
We propose a Diphasic Low Mach Number (DLMN) system for the modelling of diphasic flows without phase change at low Mach number, system which is an extension of the system proposed by Majda in [Center of Pure and Applied Mathematics, Berkeley, report No. 112] and [Combust. Sci. Tech. 42 (1985) 185–205] for low Mach number combustion problems. This system is written for a priori any equations of state. Under minimal thermodynamic hypothesis which are satisfied by a large class of generalized van...
We propose a Diphasic Low Mach Number (DLMN) system for the modelling of diphasic flows without phase change at low Mach number, system which is an extension of the system proposed by Majda in [Center of Pure and Applied Mathematics, Berkeley, report No. 112] and [Combust. Sci. Tech.42 (1985) 185–205] for low Mach number combustion problems. This system is written for a priori any equations of state. Under minimal thermodynamic hypothesis which are satisfied by a large class of generalized van...
A Navier-Stokes type equation corresponding to a non-linear relationship between the stress tensor and the velocity deformation tensor is studied and existence and uniqueness theorems for the solution, in the 3-dimensional case, of the Cauchy-Dirichlet problem, for a bounded solution and for an almost periodic solution are given. An inequality which in some sense is the limit of the equation is also considered and existence theorems for the solution of the Cauchy-Dirichlet problems and for a periodic...
The existence of a weak solution of a non-stationary free boundary transmission problem arising in the production of industrial materials is established. The process is governed by a coupled system involving the Navier--Stokes equations and a non-linear heat equation. The stationary case was studied in [7].