Sharp asymptotic estimates for vorticity solutions of the 2D Navier-Stokes equation.
Nous exposons dans cet article l'analogue de ces résultats d'existence pour l'équation de Navier-Stokes [Cannone (4), Cannone et Planchon (27, 5, 28)], mais sur un domaine extérieur Ωε, complémentaire d'un compact à bord lisse. Les deux difficultés nouvelles qui se présentent sont l'absence d'une représentation explicite en Fourier du semi-groupe associé à l'opérateur de Stokes et la nécessité de transposer la notion d'espace de Besov homogène.
Si studiano due problemi con frontiera libera per equazioni stazionarie di Navier-Stokes: il problema del movimento di un liquido viscoso incomprimibile generato dalla rotazione di una sbarra rigida immersa nel liquido con velocità angolare assegnata e il problema della fuoriuscita di un liquido da un tubo circolare nello spazio libero. Si assegna l'angolo di contatto tra la frontiera libera e la superficie del tubo e, nel secondo problema, il flusso totale del liquido attraverso l'apertura del...
We prove that - in the case of typical external forces - the set of stationary solutions of the Navier-Stokes equations is the limit of the (full) sequence of sets of solutions of the appropriate Galerkin equations, in the sense of the Hausdorff metric (for every inner approximation of the space of velocities). Then the uniqueness of the N-S equations is equivalent to the uniqueness of almost every of these Galerkin equations.
This paper deals with some inverse and control problems for the Navier-Stokes and related systems. We will focus on some particular aspects that have recently led to interesting (theoretical and numerical) results: geometric inverse problems, Eulerian and Lagrangian controllability and vortex reduction oriented to shape optimization.