Asymptotic behavior of solutions to the compressible Navier-Stokes equations on the half space
Previous Page 6
Yoshiyuki Kagei, Takayuki Kobayashi (2005)
Banach Center Publications
Lorenzo Brandolese (2004)
Revista Matemática Iberoamericana
Shigenori Yanagi (1995)
Mathematica Bohemica
We study the one-dimensional motion of the viscous gas represented by the system , , with the initial and the boundary conditions , . We are concerned with the external forces, namely the function , which do not become small for large time . The main purpose is to show how the solution to this problem behaves around the stationary one, and the proof is based on an elementary -energy method.
Stéphane Added, Hélène Added (1987)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Alberto Valli, Ivan Straskraba (1988)
Manuscripta mathematica
D. Gilbarg, H. F. Weinberger (1978)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Piotr Biler, Marco Cannone, Grzegorz Karch (2004)
Banach Center Publications
Results on the asymptotic stability of solutions of the exterior Navier-Stokes problem in ℝ³ are proved in the framework of weak spaces.
L. Miguel Rodrigues (2009)
Annales de l'I.H.P. Analyse non linéaire
Isabelle Gallagher, Dragos Iftimie, Fabrice Planchon (2003)
Annales de l’institut Fourier
We consider an a priori global strong solution to the Navier-Stokes equations. We prove it behaves like a small solution for large time. Combining this asymptotics with uniqueness and averaging in time properties, we obtain the stability of such a global solution.
S. A. Nazarov, K. Pileckas (1998)
Rendiconti del Seminario Matematico della Università di Padova
Hideo Kozono, T. Ogawa, H. Sohr (1992)
Manuscripta mathematica
F. Abergel (1989)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Jiří Neustupa, Milan Pokorný (2001)
Mathematica Bohemica
We study axisymmetric solutions to the Navier-Stokes equations in the whole three-dimensional space. We find conditions on the radial and angular components of the velocity field which are sufficient for proving the regularity of weak solutions.
Previous Page 6