The search session has expired. Please query the service again.
Displaying 421 –
440 of
788
A three-parameter family of Boussinesq type systems in two space
dimensions is considered. These systems approximate the
three-dimensional Euler equations, and consist of three nonlinear
dispersive wave equations that describe two-way propagation of
long surface waves of small amplitude in ideal fluids over a
horizontal bottom. For a subset of these systems it is proved that
their Cauchy problem is locally well-posed in suitable Sobolev
classes. Further, a class of these systems is discretized...
We derive inequalities for a local solution of a free boundary problem for a viscous compressible heat-conducting capillary fluid. The inequalities are crucial in proving the global existence of solutions belonging to certain anisotropic Sobolev-Slobodetskii space and close to an equilibrium state.
The paper deals with solutions of transonic potential flow problems handled in the weak form or as variational inequalities. Using suitable generalized methods, which are well known for elliptic partial differential equations of the second order, some properties of these solutions are derived. A maximum principle, a comparison principle and some conclusions from both ones can be established.
Motivated by [10], we prove that the upper bound of the density function controls the finite time blow up of the classical solutions to the 2-D compressible isentropic Navier-Stokes equations. This result generalizes the corresponding result in [3] concerning the regularities to the weak solutions of the 2-D compressible Navier-Stokes equations in the periodic domain.
We consider a system of balance laws describing the motion of an ionized compressible fluid interacting with magnetic fields and radiation effects. The local-in-time existence of a unique smooth solution for the Cauchy problem is proven. The proof follows from the method of successive approximations.
Analyzing the validity and success of a data assimilation algorithmwhen some state variable observations are not available is an important problem in meteorology and engineering. We present an improved data assimilation algorithm for recovering the exact full reference solution (i.e. the velocity and temperature) of the 3D Planetary Geostrophic model, at an exponential rate in time, by employing coarse spatial mesh observations of the temperature alone. This provides, in the case of this paradigm,...
We present regularity conditions for a solution to the 3D Navier-Stokes equations, the 3D Euler equations and the 2D quasigeostrophic equations, considering the vorticity directions together with the vorticity magnitude. It is found that the regularity of the vorticity direction fields is most naturally measured in terms of norms of the Triebel-Lizorkin type.
In this paper we study the derivation of
homogeneous hydrostatic equations
starting from 2D Euler equations, following for instance
[2,9]. We give a convergence result for convex profiles and
a divergence result for a particular inflexion profile.
We consider the so-called Ladyzhenskaya model of incompressible fluid, with an additional artificial smoothing term ɛΔ3. We establish the global existence, uniqueness, and regularity of solutions. Finally, we show that there exists an exponential attractor, whose dimension we estimate in terms of the relevant physical quantities, independently of ɛ > 0.
Currently displaying 421 –
440 of
788