Displaying 121 – 140 of 781

Showing per page

Conditions of Prodi-Serrin's type for local regularity of suitable weak solutions to the Navier-Stokes equations

Zdeněk Skalák (2002)

Commentationes Mathematicae Universitatis Carolinae

In the context of suitable weak solutions to the Navier-Stokes equations we present local conditions of Prodi-Serrin’s type on velocity 𝐯 and pressure p under which ( 𝐱 0 , t 0 ) Ω × ( 0 , T ) is a regular point of 𝐯 . The conditions are imposed exclusively on the outside of a sufficiently narrow space-time paraboloid with the vertex ( 𝐱 0 , t 0 ) and the axis parallel with the t -axis.

Consistent streamline residual-based artificial viscosity stabilization for numerical simulation of incompressible turbulent flow by isogeometric analysis

Bohumír Bastl, Marek Brandner, Kristýna Slabá, Eva Turnerová (2022)

Applications of Mathematics

In this paper, we propose a new stabilization technique for numerical simulation of incompressible turbulent flow by solving Reynolds-averaged Navier-Stokes equations closed by the SST k - ω turbulence model. The stabilization scheme is constructed such that it is consistent in the sense used in the finite element method, artificial diffusion is added only in the direction of convection and it is based on a purely nonlinear approach. We present numerical results obtained by our in-house incompressible...

Control of transonic shock positions

Olivier Pironneau (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We wish to show how the shock position in a nozzle could be controlled. Optimal control theory and algorithm is applied to the transonic equation. The difficulty is that the derivative with respect to the shock position involves a Dirac mass. The one dimensional case is solved, the two dimensional one is analyzed .

Control of Transonic Shock Positions

Olivier Pironneau (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We wish to show how the shock position in a nozzle could be controlled. Optimal control theory and algorithm is applied to the transonic equation. The difficulty is that the derivative with respect to the shock position involves a Dirac mass. The one dimensional case is solved, the two dimensional one is analyzed .

Control of underwater vehicles in inviscid fluids

Rodrigo Lecaros, Lionel Rosier (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we investigate the controllability of an underwater vehicle immersed in an infinite volume of an inviscid fluid whose flow is assumed to be irrotational. Taking as control input the flow of the fluid through a part of the boundary of the rigid body, we obtain a finite-dimensional system similar to Kirchhoff laws in which the control input appears through both linear terms (with time derivative) and bilinear terms. Applying Coron’s return method, we establish some local controllability...

Controllability of 3D incompressible Euler equations by a finite-dimensional external force

Hayk Nersisyan (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the control system associated with the incompressible 3D Euler system. We show that the velocity field and pressure of the fluid are exactly controllable in projections by the same finite-dimensional control. Moreover, the velocity is approximately controllable. We also prove that 3D Euler system is not exactly controllable by a finite-dimensional external force.

Controllability of nonlinear PDE’s: Agrachev–Sarychev approach

Armen Shirikyan (2007)

Journées Équations aux dérivées partielles

This short note is devoted to a discussion of a general approach to controllability of PDE’s introduced by Agrachev and Sarychev in 2005. We use the example of a 1D Burgers equation to illustrate the main ideas. It is proved that the problem in question is controllable in an appropriate sense by a two-dimensional external force. This result is not new and was proved earlier in the papers [AS05, AS07] in a more complicated situation of 2D Navier–Stokes equations.

Convergence of a fully discrete finite element method for a degenerate parabolic system modelling nematic liquid crystals with variable degree of orientation

John W. Barrett, Xiaobing Feng, Andreas Prohl (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a degenerate parabolic system which models the evolution of nematic liquid crystal with variable degree of orientation. The system is a slight modification to that proposed in [Calderer et al., SIAM J. Math. Anal.33 (2002) 1033–1047], which is a special case of Ericksen's general continuum model in [Ericksen, Arch. Ration. Mech. Anal.113 (1991) 97–120]. We prove the global existence of weak solutions by passing to the limit in a regularized system. Moreover, we propose a practical...

Convergence of the rotating fluids system in a domain with rough boundaries

David Gérard-Varet (2003)

Journées équations aux dérivées partielles

We consider a rotating fluid in a domain with rough horizontal boundaries. The Rossby number, kinematic viscosity and roughness are supposed of characteristic size ϵ . We prove a convergence theorem on solutions of Navier-Stokes Coriolis equations, as ϵ goes to zero, in the well prepared case. We show in particular that the limit system is a two-dimensional Euler equation with a nonlinear damping term due to boundary layers. We thus generalize the results obtained on flat boundaries with the classical...

Convergence towards self-similar asymptotic behavior for the dissipative quasi-geostrophic equations

José A. Carrillo, Lucas C. F. Ferreira (2006)

Banach Center Publications

This work proves the convergence in L¹(ℝ²) towards an Oseen vortex-like solution to the dissipative quasi-geostrophic equations for several sets of initial data with suitable decay at infinity. The relative entropy method applies in a direct way for solving this question in the case of signed initial data and the difficulty lies in showing the existence of unique global solutions for the class of initial data for which all properties needed in the entropy approach are met. However, the estimates...

Coupling the Stokes and Navier–Stokes equations with two scalar nonlinear parabolic equations

Macarena Gómez Mármol, Francisco Ortegón Gallego (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This work deals with a system of nonlinear parabolic equations arising in turbulence modelling. The unknowns are the N components of the velocity field u coupled with two scalar quantities θ and φ. The system presents nonlinear turbulent viscosity A ( θ , ϕ ) and nonlinear source terms of the form θ 2 | u | 2 and θ ϕ | u | 2 lying in L1. Some existence results are shown in this paper, including L -estimates and positivity for both θ and φ.

Density-dependent incompressible fluids with non-Newtonian viscosity

F. Guillén-González (2004)

Czechoslovak Mathematical Journal

We study the system of PDEs describing unsteady flows of incompressible fluids with variable density and non-constant viscosity. Indeed, one considers a stress tensor being a nonlinear function of the symmetric velocity gradient, verifying the properties of p -coercivity and ( p - 1 ) -growth, for a given parameter p > 1 . The existence of Dirichlet weak solutions was obtained in [2], in the cases p 12 / 5 if d = 3 or p 2 if d = 2 , d being the dimension of the domain. In this paper, with help of some new estimates (which lead...

Currently displaying 121 – 140 of 781