Displaying 61 – 80 of 95

Showing per page

Motor-Mediated Microtubule Self-Organization in Dilute and Semi-Dilute Filament Solutions

S. Swaminathan, F. Ziebert, I. S. Aranson, D. Karpeev (2010)

Mathematical Modelling of Natural Phenomena

We study molecular motor-induced microtubule self-organization in dilute and semi-dilute filament solutions. In the dilute case, we use a probabilistic model of microtubule interaction via molecular motors to investigate microtubule bundle dynamics. Microtubules are modeled as polar rods interacting through fully inelastic, binary collisions. Our model indicates that initially disordered systems of interacting rods exhibit an orientational instability...

Multilevel Modeling of the Forest Resource Dynamics

I. N. Vladimirov, A. K. Chudnenko (2009)

Mathematical Modelling of Natural Phenomena

We examine the theoretical and applications-specific issues relating to modeling the temporal and spatial dynamics of forest ecosystems, based on the principles of investigating dynamical models. When developing the predictive dynamical models of forest resources, there is a possibility of achieving uniqueness of the solutions to equations by taking into account the initial and boundary conditions of the solution, and the conditions of the geographical environment. We present the results of a computer...

Nonlinear evolution equations with exponential nonlinearities: conditional symmetries and exact solutions

Roman Cherniha, Oleksii Pliukhin (2011)

Banach Center Publications

New Q-conditional symmetries for a class of reaction-diffusion-convection equations with exponential diffusivities are derived. It is shown that the known results for reaction-diffusion equations with exponential diffusivities follow as particular cases from those obtained here but not vice versa. The symmetries obtained are applied to construct exact solutions of the relevant nonlinear equations. An application of exact solutions to solving a boundary-value problem with constant Dirichlet conditions...

Numerical study of the stopping of aura during migraine

C. Pocci, A. Moussa, F. Hubert, G. Chapuisat (2010)

ESAIM: Proceedings

This work is devoted to the study of migraine with aura in the human brain. Following [6], we class migraine as a propagation of a wave of depolarization through the cells. The mathematical model used, based on a reaction-diffusion equation, is briefly presented. The equation is considered in a duct containing a bend, in order to model one of the numerous circumvolutions of the brain. For a wide set of parameters, one can establish the existence...

On behavior of solutions to a chemotaxis system with a nonlinear sensitivity function

Senba, Takasi, Fujie, Kentarou (2017)

Proceedings of Equadiff 14

In this paper, we consider solutions to the following chemotaxis system with general sensitivity τ u t = Δ u - · ( u χ ( v ) ) in Ω × ( 0 , ) , η v t = Δ v - v + u in Ω × ( 0 , ) , u ν = u ν = 0 on Ω × ( 0 , ) . Here, τ and η are positive constants, χ is a smooth function on ( 0 , ) satisfying χ ' ( · ) > 0 and Ω is a bounded domain of 𝐑 n ( n 2 ). It is well known that the chemotaxis system with direct sensitivity ( χ ( v ) = χ 0 v , χ 0 > 0 ) has blowup solutions in the case where n 2 . On the other hand, in the case where χ ( v ) = χ 0 log v with 0 < χ 0 1 , any solution to the system exists globally in time and is bounded. We present a sufficient condition for the boundedness of...

On the Influence of Discrete Adhesive Patterns for Cell Shape and Motility: A Computational Approach

C. Franco, T. Tzvetkova-Chevolleau, A. Stéphanou (2010)

Mathematical Modelling of Natural Phenomena

In this paper, we propose a computational model to investigate the coupling between cell’s adhesions and actin fibres and how this coupling affects cell shape and stability. To accomplish that, we take into account the successive stages of adhesion maturation from adhesion precursors to focal complexes and ultimately to focal adhesions, as well as the actin fibres evolution from growing filaments, to bundles and finally contractile stress fibres.We use substrates with discrete patterns of adhesive...

On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher

Adrien Blanchet (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

This review is dedicated to recent results on the 2d parabolic-elliptic Patlak-Keller-Segel model, and on its variant in higher dimensions where the diffusion is of critical porous medium type. Both of these models have a critical mass M c such that the solutions exist globally in time if the mass is less than M c and above which there are solutions which blowup in finite time. The main tools, in particular the free energy, and the idea of the methods are set out. A number of open questions are also...

On the Weak Solutions of the McKendrick Equation: Existence of Demography Cycles

R. Dilão, A. Lakmeche (2010)

Mathematical Modelling of Natural Phenomena

We develop the qualitative theory of the solutions of the McKendrick partial differential equation of population dynamics. We calculate explicitly the weak solutions of the McKendrick equation and of the Lotka renewal integral equation with time and age dependent birth rate. Mortality modulus is considered age dependent. We show the existence of demography cycles. For a population with only one reproductive age class, independently of the stability of the weak solutions and after a transient time,...

Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions

Karl Kunisch, Marcus Wagner (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider optimal control problems for the bidomain equations of cardiac electrophysiology together with two-variable ionic models, e.g. the Rogers–McCulloch model. After ensuring the existence of global minimizers, we provide a rigorous proof for the system of first-order necessary optimality conditions. The proof is based on a stability estimate for the primal equations and an existence theorem for weak solutions of the adjoint system.

Optimal Screening in Structured SIR Epidemics

B. Ainseba, M. Iannelli (2012)

Mathematical Modelling of Natural Phenomena

We present a model for describing the spread of an infectious disease with public screening measures to control the spread. We want to address the problem of determining an optimal screening strategy for a disease characterized by appreciable duration of the infectiveness period and by variability of the transmission risk. The specific disease we have in mind is the HIV infection. However the model will apply to a disease for which class-age structure...

Oxygen exchange between multiple capillaries and living tissues: An homogenisation study

Andro Mikelić, Mario Primicerio (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A mathematical model for a problem of blood perfusion in a living tissue through a system of parallel capillaries is studied. Oxygen is assumed to be transported in two forms: freely diffusing and bounded (to erytrocytes in blood, to myoglobin in tissue). Existence of a weak solution is proved and a homogensation procedure is carried out in the case of randomly distribuited capillaries.

p Harmonic Measure in Simply Connected Domains

John L. Lewis, Kaj Nyström, Pietro Poggi-Corradini (2011)

Annales de l’institut Fourier

Let Ω be a bounded simply connected domain in the complex plane, . Let N be a neighborhood of Ω , let p be fixed, 1 &lt; p &lt; , and let u ^ be a positive weak solution to the p Laplace equation in Ω N . Assume that u ^ has zero boundary values on Ω in the Sobolev sense and extend u ^ to N Ω by putting u ^ 0 on N Ω . Then there exists a positive finite Borel measure μ ^ on with support contained in Ω and such that | u ^ | p - 2 u ^ , φ d A = - φ d μ ^ whenever φ C 0 ( N ) . If p = 2 and if u ^ is the Green function for Ω with pole at x Ω N ¯ then the measure μ ^ coincides with harmonic measure...

Parallel Adaptive Finite Element Algorithms for Solving the Coupled Electro-diffusion Equations

Yan Xie, Jie Cheng, Benzhuo Lu, Linbo Zhang (2013)

Molecular Based Mathematical Biology

rithms for solving the 3D electro-diffusion equations such as the Poisson-Nernst-Planck equations and the size-modified Poisson-Nernst-Planck equations in simulations of biomolecular systems in ionic liquid. A set of transformation methods based on the generalized Slotboom variables is used to solve the coupled equations. Calculations of the diffusion-reaction rate coefficients, electrostatic potential and ion concentrations for various systems verify the method’s validity and stability. The iterations...

Parameter estimation in non-linear mixed effects models with SAEM algorithm: extension from ODE to PDE

E. Grenier, V. Louvet, P. Vigneaux (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Parameter estimation in non linear mixed effects models requires a large number of evaluations of the model to study. For ordinary differential equations, the overall computation time remains reasonable. However when the model itself is complex (for instance when it is a set of partial differential equations) it may be time consuming to evaluate it for a single set of parameters. The procedures of population parametrization (for instance using SAEM algorithms) are then very long and in some cases...

Periodic solutions of a three-species periodic reaction-diffusion system

Tiantian Qiao, Jiebao Sun, Boying Wu (2011)

Annales Polonici Mathematici

We study a periodic reaction-diffusion system of a competitive model with Dirichlet boundary conditions. By the method of upper and lower solutions and an argument similar to that of Ahmad and Lazer, we establish the existence of periodic solutions and also investigate the stability and global attractivity of positive periodic solutions under certain conditions.

Propagation of Growth Uncertainty in a Physiologically Structured Population

H.T. Banks, S. Hu (2012)

Mathematical Modelling of Natural Phenomena

In this review paper we consider physiologically structured population models that have been widely studied and employed in the literature to model the dynamics of a wide variety of populations. However in a number of cases these have been found inadequate to describe some phenomena arising in certain real-world applications such as dispersion in the structure variables due to growth uncertainty/variability. Prompted by this, we described two recent...

Currently displaying 61 – 80 of 95