Displaying 21 – 40 of 58

Showing per page

Controller design for bush-type 1-d wave networks

Yaxuan Zhang, Genqi Xu (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...

Controller design for bush-type 1-d wave networks∗

Yaxuan Zhang, Genqi Xu (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...

Deterministic state-constrained optimal control problems without controllability assumptions

Olivier Bokanowski, Nicolas Forcadel, Hasnaa Zidani (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In the present paper, we consider nonlinear optimal control problems with constraints on the state of the system. We are interested in the characterization of the value function without any controllability assumption. In the unconstrained case, it is possible to derive a characterization of the value function by means of a Hamilton-Jacobi-Bellman (HJB) equation. This equation expresses the behavior of the value function along the trajectories arriving or starting from any position x. In the constrained...

Deterministic state-constrained optimal control problems without controllability assumptions

Olivier Bokanowski, Nicolas Forcadel, Hasnaa Zidani (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In the present paper, we consider nonlinear optimal control problems with constraints on the state of the system. We are interested in the characterization of the value function without any controllability assumption. In the unconstrained case, it is possible to derive a characterization of the value function by means of a Hamilton-Jacobi-Bellman (HJB) equation. This equation expresses the behavior of the value function along the trajectories arriving or starting from any position x. In...

Dimension reduction for functionals on solenoidal vector fields

Stefan Krömer (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We study integral functionals constrained to divergence-free vector fields in Lp on a thin domain, under standard p-growth and coercivity assumptions, 1 < p < ∞. We prove that as the thickness of the domain goes to zero, the Gamma-limit with respect to weak convergence in Lp is always given by the associated functional with convexified energy density wherever it is finite. Remarkably, this happens despite the fact that relaxation of nonconvex functionals subject to the limiting constraint...

Dimension reduction for functionals on solenoidal vector fields

Stefan Krömer (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We study integral functionals constrained to divergence-free vector fields in Lp on a thin domain, under standard p-growth and coercivity assumptions, 1 < p < ∞. We prove that as the thickness of the domain goes to zero, the Gamma-limit with respect to weak convergence in Lp is always given by the associated functional with convexified energy density wherever it is finite. Remarkably, this happens despite the fact that relaxation of nonconvex functionals subject to the limiting constraint...

Linear-quadratic optimal control for the Oseen equations with stabilized finite elements

Malte Braack, Benjamin Tews (2012)

ESAIM: Control, Optimisation and Calculus of Variations

For robust discretizations of the Navier-Stokes equations with small viscosity, standard Galerkin schemes have to be augmented by stabilization terms due to the indefinite convective terms and due to a possible lost of a discrete inf-sup condition. For optimal control problems for fluids such stabilization have in general an undesired effect in the sense that optimization and discretization do not commute. This is the case for the combination of streamline upwind Petrov-Galerkin (SUPG) and pressure...

Local exact controllability for the 1 -d compressible Navier-Stokes equations

Sylvain Ervedoza (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

In this talk, I will present a recent result obtained in [6] with O. Glass, S. Guerrero and J.-P. Puel on the local exact controllability of the 1 -d compressible Navier-Stokes equations. The goal of these notes is to give an informal presentation of this article and we refer the reader to it for extensive details.

Local null controllability of a fluid-solid interaction problem in dimension 3

Muriel Boulakia, Sergio Guerrero (2013)

Journal of the European Mathematical Society

We are interested by the three-dimensional coupling between an incompressible fluid and a rigid body. The fluid is modeled by the Navier-Stokes equations, while the solid satisfies the Newton's laws. In the main result of the paper we prove that, with the help of a distributed control, we can drive the fluid and structure velocities to zero and the solid to a reference position provided that the initial velocities are small enough and the initial position of the structure is close to the reference...

Null controllability of degenerate parabolic equations of Grushin and Kolmogorov type

Karine Beauchard (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

The goal of this note is to present the results of the references [5] and [4]. We study the null controllability of the parabolic equations associated with the Grushin-type operator x 2 + | x | 2 γ y 2 ( γ &gt; 0 ) in the rectangle ( x , y ) ( - 1 , 1 ) × ( 0 , 1 ) or with the Kolmogorov-type operator v γ x f + v 2 f ( γ { 1 , 2 } ) in the rectangle ( x , v ) 𝕋 × ( - 1 , 1 ) , under an additive control supported in an open subset ω of the space domain.We prove that the Grushin-type equation is null controllable in any positive time for γ &lt; 1 and that there is no time for which it is null controllable for γ &gt; 1 ....

Null-control and measurable sets

Jone Apraiz, Luis Escauriaza (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We prove the interior and boundary null-controllability of some parabolic evolutions with controls acting over measurable sets.

Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations

Eduardo Casas, Fredi Tröltzsch (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we carry out the numerical analysis of a distributed optimal control problem governed by a quasilinear elliptic equation of non-monotone type. The goal is to prove the strong convergence of the discretization of the problem by finite elements. The main issue is to get error estimates for the discretization of the state equation. One of the difficulties in this analysis is that, in spite of the partial differential equation has a unique solution for any given control, the uniqueness...

Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations*

Eduardo Casas, Fredi Tröltzsch (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we carry out the numerical analysis of a distributed optimal control problem governed by a quasilinear elliptic equation of non-monotone type. The goal is to prove the strong convergence of the discretization of the problem by finite elements. The main issue is to get error estimates for the discretization of the state equation. One of the difficulties in this analysis is that, in spite of the partial differential equation has a unique solution for any given control, the uniqueness...

On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations

Jérôme Le Rousseau, Gilles Lebeau (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are presented. We point out the connexion of these optimality results to the local phase-space geometry after conjugation...

On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations∗∗∗

Jérôme Le Rousseau, Gilles Lebeau (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are presented. We point out the connexion of these optimality results to the local phase-space geometry after conjugation...

On one algorithm for solving the problem of source function reconstruction

Vyacheslav Maksimov (2010)

International Journal of Applied Mathematics and Computer Science

In the paper, the problem of source function reconstruction in a differential equation of the parabolic type is investigated. Using the semigroup representation of trajectories of dynamical systems, we build a finite-step iterative procedure for solving this problem. The algorithm originates from the theory of closed-loop control (the method of extremal shift). At every step of the algorithm, the sum of a quality criterion and a linear penalty term is minimized. This procedure is robust to perturbations...

Currently displaying 21 – 40 of 58