Displaying 181 – 200 of 349

Showing per page

Spectral discretization of Darcy equations coupled with Navier-Stokes equations by vorticity-velocity-pressure formulation

Yassine Mabrouki, Jamil Satouri (2022)

Applications of Mathematics

We consider a model coupling the Darcy equations in a porous medium with the Navier-Stokes equations in the cracks, for which the coupling is provided by the pressure's continuity on the interface. We discretize the coupled problem by the spectral element method combined with a nonoverlapping domain decomposition method. We prove the existence of solution for the discrete problem and establish an error estimation. We conclude with some numerical tests confirming the results of our analysis.

Spectral element discretization of the vorticity, velocity and pressure formulation of the Stokes problem

Karima Amoura, Christine Bernardi, Nejmeddine Chorfi (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the Stokes problem provided with non standard boundary conditions which involve the normal component of the velocity and the tangential components of the vorticity. We write a variational formulation of this problem with three independent unknowns: the vorticity, the velocity and the pressure. Next we propose a discretization by spectral element methods which relies on this formulation. A detailed numerical analysis leads to optimal error estimates for the three unknowns and numerical...

Spectral element discretization of the vorticity, velocity and pressure formulation of the Stokes problem

Karima Amoura, Christine Bernardi, Nejmeddine Chorfi (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the Stokes problem provided with non standard boundary conditions which involve the normal component of the velocity and the tangential components of the vorticity. We write a variational formulation of this problem with three independent unknowns: the vorticity, the velocity and the pressure. Next we propose a discretization by spectral element methods which relies on this formulation. A detailed numerical analysis leads to optimal error estimates for the three unknowns and numerical...

Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift

David J. Knezevic, Endre Süli (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the analysis and implementation of spectral Galerkin methods for a class of Fokker-Planck equations that arises from the kinetic theory of dilute polymers. A relevant feature of the class of equations under consideration from the viewpoint of mathematical analysis and numerical approximation is the presence of an unbounded drift coefficient, involving a smooth convex potential U that is equal to + along the boundary D of the computational domain D . Using a symmetrization...

Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift

David J. Knezevic, Endre Süli (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the analysis and implementation of spectral Galerkin methods for a class of Fokker-Planck equations that arises from the kinetic theory of dilute polymers. A relevant feature of the class of equations under consideration from the viewpoint of mathematical analysis and numerical approximation is the presence of an unbounded drift coefficient, involving a smooth convex potential U that is equal to +∞ along the boundary ∂D of the computational domain D. Using a symmetrization...

Spectral invariants for coupled spin-oscillators

San Vũ Ngọc (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

This text deals with inverse spectral theory in a semiclassical setting. Given a quantum system, the haunting question is “What interesting quantities can be discovered on the spectrum that can help to characterize the system ?” The general framework will be semiclassical analysis, and the issue is to recover the classical dynamics from the quantum spectrum. The coupling of a spin and an oscillator is a fundamental example in physics where some nontrivial explicit calculations can be done.

Spectres et groupes cristallographiques. II : domaines sphériques

Pierre Bérard, Gérard Besson (1980)

Annales de l'institut Fourier

Dans cet article, nous donnons une description des spectres du laplacien dans certains domaines sphériques. Les représentations des groupes de Coxeter cristallographiques y jouent un rôle fondamental.

Speed-up of reaction-diffusion fronts by a line of fast diffusion

Henri Berestycki, Anne-Charline Coulon, Jean-Michel Roquejoffre, Luca Rossi (2013/2014)

Séminaire Laurent Schwartz — EDP et applications

In these notes, we discuss a new model, proposed by H. Berestycki, J.-M. Roquejoffre and L. Rossi, to describe biological invasions in the plane when a strong diffusion takes place on a line. This model seems relevant to account for the effects of roads on the spreading of invasive species. In what follows, the diffusion on the line will either be modelled by the Laplacian operator, or the fractional Laplacian of order less than 1. Of interest to us is the asymptotic speed of spreading in the direction...

Currently displaying 181 – 200 of 349