Displaying 21 – 40 of 98

Showing per page

Periodic solutions of a three-species periodic reaction-diffusion system

Tiantian Qiao, Jiebao Sun, Boying Wu (2011)

Annales Polonici Mathematici

We study a periodic reaction-diffusion system of a competitive model with Dirichlet boundary conditions. By the method of upper and lower solutions and an argument similar to that of Ahmad and Lazer, we establish the existence of periodic solutions and also investigate the stability and global attractivity of positive periodic solutions under certain conditions.

Perturbations of the harmonic map equation

Thomas Kappeler (2002)

Journées équations aux dérivées partielles

We consider perturbations of the harmonic map equation in the case where the source and target manifolds are closed riemannian manifolds and the latter is in addition of nonpositive sectional curvature. For any semilinear and, under some extra conditions, quasilinear perturbation, the space of classical solutions within a homotopy class is proved to be compact. For generic perturbations the set of solutions is finite and we present a count of this set. An important ingredient for our analysis is...

Phase field model for mode III crack growth in two dimensional elasticity

Takeshi Takaishi, Masato Kimura (2009)

Kybernetika

A phase field model for anti-plane shear crack growth in two dimensional isotropic elastic material is proposed. We introduce a phase field to represent the shape of the crack with a regularization parameter ϵ > 0 and we approximate the Francfort–Marigo type energy using the idea of Ambrosio and Tortorelli. The phase field model is derived as a gradient flow of this regularized energy. We show several numerical examples of the crack growth computed with an adaptive mesh finite element method.

Planar flows of incompressible heat-conducting shear-thinning fluids — existence analysis

Miroslav Bulíček, Oldřich Ulrych (2011)

Applications of Mathematics

We study the flow of an incompressible homogeneous fluid whose material coefficients depend on the temperature and the shear-rate. For large class of models we establish the existence of a suitable weak solution for two-dimensional flows of fluid in a bounded domain. The proof relies on the reconstruction of the globally integrable pressure, available due to considered Navier’s slip boundary conditions, and on the so-called L -truncation method, used to obtain the strong convergence of the velocity...

Plane wave stability of some conservative schemes for the cubic Schrödinger equation

Morten Dahlby, Brynjulf Owren (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

The plane wave stability properties of the conservative schemes of Besse [SIAM J. Numer. Anal.42 (2004) 934–952] and Fei et al. [Appl. Math. Comput.71 (1995) 165–177] for the cubic Schrödinger equation are analysed. Although the two methods possess many of the same conservation properties, we show that their stability behaviour is very different. An energy preserving generalisation of the Fei method with improved stability is presented.

Poche de tourbillon pour Euler 2D incompressible dans un ouvert à bord

Nicolas Depauw (1998)

Journées équations aux dérivées partielles

Nous considérons l'équation d'Euler pour un fluide incompressible dans un domaine borné régulier du plan. Pour une donnée initiale avec un tourbillon de type poche, i.e valant 1 sur un ouvert lisse à bord höldérien et 0 en dehors, nous prouvons l'existence d'une solution de même type, pour tout temps si la poche initiale est décollée du bord du domaine et seulement localement en temps si la poche initiale est tangente au bord. Nous contrôlons l'influence du bord grâce à la théorie des problèmes...

Poches de tourbillon singulières dans un fluide faiblement visqueux.

Taoufik Hmidi (2006)

Revista Matemática Iberoamericana

In this paper, we study the singular vortex patches in the two-dimensional incompressible Navier-Stokes equations. We show, in particular, that if the initial vortex patch is C1+s outside a singular set Σ, so the velocity is, for all time, lipschitzian outside the image of Σ through the viscous flow. In addition, the correponding lipschitzian norm is independent of the viscosity. This allows us to prove some results related to the inviscid limit for the geometric structures of the vortex patch.

Currently displaying 21 – 40 of 98