Displaying 461 – 480 of 3677

Showing per page

Asymptotics of a Time-Splitting Scheme for the Random Schrödinger Equation with Long-Range Correlations

Christophe Gomez, Olivier Pinaud (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This work is concerned with the asymptotic analysis of a time-splitting scheme for the Schrödinger equation with a random potential having weak amplitude, fast oscillations in time and space, and long-range correlations. Such a problem arises for instance in the simulation of waves propagating in random media in the paraxial approximation. The high-frequency limit of the Schrödinger equation leads to different regimes depending on the distance of propagation, the oscillation pattern of the initial...

Asymptotiques de Lifshitz

Frédéric Klopp (2001/2002)

Séminaire Équations aux dérivées partielles

Cet exposé a pour but de présenter des résultats récents de l’auteur concernant les asymptotiques de Lifshitz pour des perturbations aléatoires d’opérateurs de Schrödinger périodiques. Certains de ces résultats ont été obtenus en collaboration avec T. Wolff.

Attractors of Strongly Dissipative Systems

A. G. Ramm (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

A class of infinite-dimensional dissipative dynamical systems is defined for which there exists a unique equilibrium point, and the rate of convergence to this point of the trajectories of a dynamical system from the above class is exponential. All the trajectories of the system converge to this point as t → +∞, no matter what the initial conditions are. This class consists of strongly dissipative systems. An example of such systems is provided by passive systems in network theory (see, e.g., MR0601947...

Currently displaying 461 – 480 of 3677