Integrability of the Bakirov system: a zero-curvature representation.
The Hamiltonian representation for a hierarchy of Lax type equations on a dual space to the Lie algebra of integro-differential operators with matrix coefficients, extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems, is obtained via some special Bäcklund transformation. The connection of this hierarchy with integrable by Lax two-dimensional Davey-Stewartson type systems is studied.
An exploratory study is performed to investigate the use of a time-dependent discrete adjoint methodology for design optimization of a high-lift wing configuration augmented with an active flow control system. The location and blowing parameters associated with a series of jet actuation orifices are used as design variables. In addition, a geometric parameterization scheme is developed to provide a compact set of design variables describing the wing...
Spatiotemporal patterns near a codimension-2 Turing-Hopf point of the one-dimensional superdiffusive Brusselator model are analyzed. The superdiffusive Brusselator model differs from its regular counterpart in that the Laplacian operator of the regular model is replaced by ∂α/∂|ξ|α, 1 < α < 2, an integro-differential operator that reflects the nonlocal behavior of superdiffusion. The order of the operator, α, is a measure of the rate of ...
This paper deals with the non-conservative coupling of two one-dimensional barotropic Euler systems at an interface at x = 0. The closure pressure laws differ in the domains x < 0 and x > 0, and a Dirac source term concentrated at x = 0 models singular pressure losses. We propose two numerical methods. The first one relies on ghost state reconstructions at the interface while the second is based on a suitable relaxation framework. Both methods satisfy a well-balanced property for stationary...
In this paper we consider weak solutions to the equations of stationary motion of a fluid with shear dependent viscosity in a bounded domain ( or ). For the critical case we prove the higher integrability of which forms the basis for applying the method of differences in order to get fractional differentiability of . From this we show the existence of second order weak derivatives of .
In this paper we establish interior regularity for weak solutions and partial regularity for suitable weak solutions of the perturbed Navier-Stokes system, which can be regarded as generalizations of the results in L. Caffarelli, R. Kohn, L. Nirenberg: Partial regularity of suitable weak solutions of the Navier-Stokes equations, Commun. Pure. Appl. Math. 35 (1982), 771–831, and S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscr. Math. 69...
We investigate the existence, uniqueness and polynomial stability of the weighted pseudo almost automorphic solutions to a class of linear and semilinear parabolic evolution equations. The necessary tools here are interpolation spaces and interpolation theorems which help to prove the boundedness of solution operators in appropriate spaces for linear equations. Then for the semilinear equations the fixed point arguments are used to obtain the existence and stability of the weighted pseudo almost...