Displaying 721 – 740 of 3659

Showing per page

Darboux transforms of Dupin surfaces

Emilio Musso, Lorenzo Nicolodi (2002)

Banach Center Publications

We present a Möbius invariant construction of the Darboux transformation for isothermic surfaces by the method of moving frames and use it to give a complete classification of the Darboux transforms of Dupin surfaces.

Density-dependent incompressible fluids with non-Newtonian viscosity

F. Guillén-González (2004)

Czechoslovak Mathematical Journal

We study the system of PDEs describing unsteady flows of incompressible fluids with variable density and non-constant viscosity. Indeed, one considers a stress tensor being a nonlinear function of the symmetric velocity gradient, verifying the properties of p -coercivity and ( p - 1 ) -growth, for a given parameter p > 1 . The existence of Dirichlet weak solutions was obtained in [2], in the cases p 12 / 5 if d = 3 or p 2 if d = 2 , d being the dimension of the domain. In this paper, with help of some new estimates (which lead...

Derivation and mathematical analysis of a nonlocal model for large amplitude internal waves

David Lannes (2008/2009)

Séminaire Équations aux dérivées partielles

This note is devoted to the study of a bi-fluid generalization of the nonlinear shallow-water equations. It describes the evolution of the interface between two fluids of different densities. In the case of a two-dimensional interface, this systems contains unexpected nonlocal terms (that are of course not present in the usual one-fluid shallow water equations). We show here how to derive this systems from the two-fluid Euler equations and then show that it is locally well-posed.

Currently displaying 721 – 740 of 3659