Global self-similar solutions of a class of nonlinear Schrödinger equations.
The paper contains the proof of global existence of weak solutions of the viscous compressible barotropic gas for the initial-boundary value problem in a finite channel.
The article deals with a nonlinear generalized Ginzburg-Landau (Allen-Cahn) system of PDEs accounting for nonisothermal phase transition phenomena which was recently derived by A. Miranville and G. Schimperna: Nonisothermal phase separation based on a microforce balance, Discrete Contin. Dyn. Syst., Ser. B, 5 (2005), 753–768. The existence of solutions to a related Neumann-Robin problem is established in an -dimensional space setting. A fixed point procedure guarantees the existence of solutions...
The paper contains the proof of global existence of weak solutions viscous compressible isothermal bipolar fluid of initial boundary value in a finite channel.
In this note we present a proof of existence of global in time regular (unique) solutions to the Navier-Stokes equations in an arbitrary three dimensional domain with a general boundary condition. The only restriction is that the L₂-norm of the initial datum is required to be sufficiently small. The magnitude of the rest of the norm is not restricted. Our considerations show the essential role played by the energy bound in proving global in time results for the Navier-Stokes equations.
The main objective of this paper is to study the global strong solution of the parabolic-hyperbolic incompressible magnetohydrodynamic model in the two dimensional space. Based on Agmon, Douglis, and Nirenberg’s estimates for the stationary Stokes equation and Solonnikov’s theorem on --estimates for the evolution Stokes equation, it is shown that this coupled magnetohydrodynamic equations possesses a global strong solution. In addition, the uniqueness of the global strong solution is obtained.