Displaying 121 – 140 of 3659

Showing per page

A note of uniqueness on the Cauchy problem for Schrödinger or heat equations with degenerate elliptic principal parts

Hideki Takuwa (2004)

Bollettino dell'Unione Matematica Italiana

We study the local uniqueness in the Cauchy problem for Schrödinger or heat equations whose principal parts are nonnegative. We show the compact uniqueness under a weak form of pseudo convexity. This makes up for the known results under the conormal pseudo convexity given by Tataru, Hörmander, Robbiano- Zuily and L. T'Joen. Our method is based on a kind of integral transform and a weak form of Carleman estimate for degenerate elliptic operators.

A Note on an Application of the Lasota-York Fixed Point Theorem in the Turbulent Transport Problem

Tomasz Komorowski, Grzegorz Krupa (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

We study a model of motion of a passive tracer particle in a turbulent flow that is strongly mixing in time variable. In [8] we have shown that there exists a probability measure equivalent to the underlying physical probability under which the quasi-Lagrangian velocity process, i.e. the velocity of the flow observed from the vintage point of the moving particle, is stationary and ergodic. As a consequence, we proved the existence of the mean of the quasi-Lagrangian velocity, the so-called Stokes...

A note on bounds for non-linear multivalued homogenized operators

Nils Svanstedt (1998)

Applications of Mathematics

In this paper we study the behaviour of maximal monotone multivalued highly oscillatory operators. We construct Reuss-Voigt-Wiener and Hashin-Shtrikmann type bounds for the minimal sections of G-limits of multivalued operators by using variational convergence and convex analysis.

A note on measure-valued solutions to the full Euler system

Václav Mácha, Emil Wiedemann (2022)

Applications of Mathematics

We construct two particular solutions of the full Euler system which emanate from the same initial data. Our aim is to show that the convex combination of these two solutions form a measure-valued solution which may not be approximated by a sequence of weak solutions. As a result, the weak* closure of the set of all weak solutions, considered as parametrized measures, is not equal to the space of all measure-valued solutions. This is in stark contrast with the incompressible Euler equations.

A note on poroacoustic traveling waves under Darcy's law: Exact solutions

P. M. Jordan, J. K. Fulford (2011)

Applications of Mathematics

A mathematical analysis of poroacoustic traveling wave phenomena is presented. Assuming that the fluid phase satisfies the perfect gas law and that the drag offered by the porous matrix is described by Darcy's law, exact traveling wave solutions (TWS)s, as well as asymptotic/approximate expressions, are derived and examined. In particular, stability issues are addressed, shock and acceleration waves are shown to arise, and special/limiting cases are noted. Lastly, connections to other fields are...

A note on the generalized energy inequality in the Navier-Stokes equations

Petr Kučera, Zdeněk Skalák (2003)

Applications of Mathematics

We prove that there exists a suitable weak solution of the Navier-Stokes equation, which satisfies the generalized energy inequality for every nonnegative test function. This improves the famous result on existence of a suitable weak solution which satisfies this inequality for smooth nonnegative test functions with compact support in the space-time.

A null controllability data assimilation methodology applied to a large scale ocean circulation model

Galina C. García, Axel Osses, Jean Pierre Puel (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Data assimilation refers to any methodology that uses partial observational data and the dynamics of a system for estimating the model state or its parameters. We consider here a non classical approach to data assimilation based in null controllability introduced in [Puel, C. R. Math. Acad. Sci. Paris 335 (2002) 161–166] and [Puel, SIAM J. Control Optim. 48 (2009) 1089–1111] and we apply it to oceanography. More precisely, we are interested in developing this methodology to recover the unknown final...

A null controllability data assimilation methodology applied to a large scale ocean circulation model*

Galina C. García, Axel Osses, Jean Pierre Puel (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Data assimilation refers to any methodology that uses partial observational data and the dynamics of a system for estimating the model state or its parameters. We consider here a non classical approach to data assimilation based in null controllability introduced in [Puel, C. R. Math. Acad. Sci. Paris335 (2002) 161–166] and [Puel, SIAM J. Control Optim.48 (2009) 1089–1111] and we apply it to oceanography. More precisely, we are interested in developing this methodology to recover the unknown final...

A numerical perspective on Hartree−Fock−Bogoliubov theory

Mathieu Lewin, Séverine Paul (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The method of choice for describing attractive quantum systems is Hartree−Fock−Bogoliubov (HFB) theory. This is a nonlinear model which allows for the description of pairing effects, the main explanation for the superconductivity of certain materials at very low temperature. This paper is the first study of Hartree−Fock−Bogoliubov theory from the point of view of numerical analysis. We start by discussing its proper discretization and then analyze the convergence of the simple fixed point (Roothaan)...

A numerical scheme for the quantum Boltzmann equation with stiff collision terms

Francis Filbet, Jingwei Hu, Shi Jin (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Numerically solving the Boltzmann kinetic equations with the small Knudsen number is challenging due to the stiff nonlinear collision terms. A class of asymptotic-preserving schemes was introduced in [F. Filbet and S. Jin,J. Comput. Phys. 229 (2010) 7625–7648] to handle this kind of problems. The idea is to penalize the stiff collision term by a BGK type operator. This method, however, encounters its own difficulty when applied to the quantum Boltzmann equation. To define the quantum Maxwellian...

Currently displaying 121 – 140 of 3659