The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 121 –
140 of
140
This work deals with the numerical solution of generalized Newtonian and Oldroyd-B fluids flow. The governing system of equations is based on the system of balance laws for mass and momentum for incompressible laminar viscous and viscoelastic fluids. Two different definition of the stress tensor are considered. For viscous case Newtonian
model is used. For the viscoelastic case Oldroyd-B model is tested. Both presented models can be generalized. In this case the viscosity is defined as a shear rate...
We consider the numerical solution, in two- and three-dimensional bounded domains, of the inverse problem for identifying the location of small-volume, conductivity imperfections in a medium with homogeneous background. A dynamic approach, based on the wave equation, permits us to treat the important case of “limited-view” data. Our numerical algorithm is based on the coupling of a finite element solution of the wave equation, an exact controllability method and finally a Fourier inversion for localizing...
We consider the numerical solution, in two- and three-dimensional
bounded domains, of the inverse problem for identifying the location
of small-volume, conductivity imperfections in a medium with homogeneous
background. A dynamic approach, based on the wave equation, permits
us to treat the important case of “limited-view” data. Our numerical
algorithm is based on the coupling of a finite element solution of
the wave equation, an exact controllability method and finally a Fourier
inversion for...
The paper deals with numerical solution of internal flow problems. It mentions a long tradition of mathematical modeling of internal flow, especially transonic flow at our department. Several models of flow based on potential equation, Euler equations, Navier-Stokes and Reynolds averaged Navier-Stokes equations with proper closure are considered. Some mathematical and numerical properties of the model are mentioned and numerical results achieved by in-house developed methods are presented.
For the Maxwell equations in time-dependent media only finite difference schemes with time-dependent conductivity are known. In this paper we present a numerical scheme based on the Magnus expansion and operator splitting that can handle time-dependent permeability and permittivity too. We demonstrate our results with numerical tests.
The topic of this paper is the numerical analysis of time periodic solution for electro-magnetic phenomena. The Limit Absorption Method (LAM) which forms the basis of our study is presented. Theoretical results have been proved in the linear finite dimensional case. This method is applied to scattering problems and transport of charged particles.
The topic of this paper is the numerical analysis of time
periodic solution for electro-magnetic phenomena.
The Limit Absorption Method (LAM)
which forms the basis of our study is presented. Theoretical
results have been proved in the linear finite dimensional case. This
method is applied to scattering problems and transport of charged
particles.
It is rather classical to model multiperforated plates by approximate impedance boundary
conditions. In this article we would like to compare an instance of such boundary
conditions obtained through a matched asymptotic expansions technique to direct numerical
computations based on a boundary element formulation in the case of linear acoustic.
In this article we implement different numerical schemes to simulate the Schrödinger-Debye equations that occur in nonlinear optics. Since the existence of blow-up solutions is an open problem, we try to compute such solutions. The convergence of the methods is proved and simulations seem indeed to show that for at least small delays self-focusing solutions may exist.
In this article we implement different numerical schemes to simulate the
Schrödinger-Debye equations that occur in nonlinear optics. Since the
existence of blow-up solutions is an open problem, we try to compute such
solutions. The convergence of the methods is proved and simulations seem
indeed to show that for at least small delays self-focusing solutions may
exist.
We deal with numerical analysis and simulations of the Davey-Stewartson equations which model, for example, the evolution of water surface waves. This time dependent PDE system is particularly interesting as a generalization of the 1-d integrable NLS to 2 space dimensions. We use a time splitting spectral method where we give a convergence analysis for the semi-discrete version of the scheme. Numerical results are presented for various blow-up phenomena of the equation, including blowup of defocusing,...
We deal with numerical analysis and simulations of the Davey-Stewartson equations
which model, for example, the evolution of water surface waves.
This time dependent PDE system is particularly interesting as a generalization
of the 1-d integrable NLS to 2 space dimensions.
We use a time splitting spectral method where
we give a convergence analysis for the semi-discrete version of the scheme.
Numerical results are presented for various blow-up phenomena of
the equation, including blowup of defocusing,...
This work is devoted to the study of migraine with aura in the human brain. Following
[6], we class migraine as a propagation of a wave of depolarization through
the cells. The mathematical model used, based on a reaction-diffusion equation, is briefly
presented. The equation is considered in a duct containing a bend, in order to model one
of the numerous circumvolutions of the brain. For a wide set of parameters, one can
establish the existence...
Currently displaying 121 –
140 of
140