Displaying 321 – 340 of 378

Showing per page

Sur la construction de mesures selles

Henry de Thélin (2006)

Annales de l’institut Fourier

Nous construisons des mesures selles (dans un sens faible) pour les endomorphismes holomorphes de 2 ( ) .

Sur la dynamique arithmétique des automorphismes de l’espace affine

Sandra Marcello (2003)

Bulletin de la Société Mathématique de France

Nous étudions les propriétés arithmétiques des itérés de certains automorphismes polynomiaux affines. Nous traitons des questions concernant les points périodiques et non-périodiques, en particulier nous comptons les points rationnels dans les orbites des points non-périodiques. Nous traitons le cas des automorphismes réguliers et triangulaires. Nous achevons de répondre aux questions en dimension 2 et montrons que la situation est nettement plus compliquée en dimension supérieure.

Sur la dynamique des difféomorphismes birationnels des surfaces algébriques réelles : ensemble de Fatou et lieu réel

Arnaud Moncet (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

On s’intéresse aux difféomorphismes birationnels des surfaces algébriques réelles qui possèdent une dynamique réelle simple et une dynamique complexe riche. On donne un exemple d’une telle transformation sur 1 × 1 , mais on montre qu’une telle situation est exceptionnelle et impose des conditions fortes à la fois sur la topologie du lieu réel et sur la dynamique réelle.

Sur la persistance des courbes invariantes pour les dynamiques holomorphes fibrées lisses

Mario Ponce (2010)

Bulletin de la Société Mathématique de France

En s’appuyant sur un théorème des fonctions implicites de Hamilton, nous montrons la persistance d’une courbe invariante indifférente pour une dynamique holomorphe fibrée de classe C . Une condition diophantienne sur la paire de nombres de rotation est demandée. On montre également que cette condition est optimale.

Sur la topologie des courbes polaires de certains feuilletages singuliers

Nuria Corral (2003)

Annales de l’institut Fourier

On démontre l’énoncé classique du théorème de décomposition de la polaire générique dans le contexte maximal des feuilletages courbes généralisées à modèle logarithmique non résonnant. On montre aussi la propriété d’éloignement des séparatrices pour le feuilletage polaire.

Sur les ensembles de Julia et Fatou des fonctions entières ultramétriques

Jean-Paul Bézivin (2001)

Annales de l’institut Fourier

Soit p un nombre premier rationnel. Le sujet de l’article est l’étude de la dynamique des fonctions entières p -adiques. On démontre des résultats analogues à ceux connus dans le domaine complexe, en particulier si deux fonctions entières p -adiques qui ont un point répulsif commun commutent, alors leurs ensembles de Julia et de Fatou sont les mêmes.

Sur les équations différentielles algébriques admettant des solutions avec une singularité essentielle

Ivan Pan, Marcos Sebastiani (2001)

Annales de l’institut Fourier

On démontre qu'une feuille transcendante d'un feuilletage analytique sur une surface fibrée doit intersecter toute courbe algébrique non invariante et non contenue dans une réunion de fibres de la fibration; comme application on montre qu'une équation différentielle algébrique qui possède une solution locale avec une singularité essentielle n'a pas de ramification mobile, ce qui généralise les théorèmes de Malmquist et Yosida.

Sur les feuilletages holomorphes transversalement projectifs

Frédéric Touzet (2003)

Annales de l’institut Fourier

Dans cet article nous étudions les feuilletages holomorphes réduits en dimension complexe 2. Plus précisément, nous caractérisons par leur espace de module analytique, ceux qui sont transversalement projectifs en dehors d'un sous-ensemble analytique propre. Ceci entraî ne que cette classe de feuilletages est obtenue par pull-back d'équations de Riccati. Nous montrons enfin que cette dernière propriété peut être mise en défaut dans le cas non réduit.

Sur l'intersection des courants laminaires.

Romain Dujardin (2004)

Publicacions Matemàtiques

We try to find a geometric interpretation of the wedge product of positive closed laminar currents in C2. We say such a wedge product is geometric if it is given by intersecting the disks filling up the currents. Uniformly laminar currents do always intersect geometrically in this sense. We also introduce a class of strongly approximable laminar currents, natural from the dynamical point of view, and prove that such currents intersect geometrically provided they have continuous potentials.

Tan Lei and Shishikura’s example of non-mateable degree 3 polynomials without a Levy cycle

Arnaud Chéritat (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

After giving an introduction to the procedure dubbed slow polynomial mating and quickly recalling known results about more classical notions of polynomial mating, we show conformally correct pictures of the slow mating of two degree 3 post critically finite polynomials introduced by Shishikura and Tan Lei as an example of a non matable pair of polynomials without a Levy cycle. The pictures show a limit for the Julia sets, which seems to be related to the Julia set of a degree 6 rational map. We...

The Bernoulli shift as a basic chaotic dynamical system

Kučera, Václav (2019)

Programs and Algorithms of Numerical Mathematics

We give a brief introduction to the Bernoulli shift map as a basic chaotic dynamical system. We give several examples where the iterates of a~mapping can be understood using the Bernoulli shift. Namely, the iteration of real interval maps and iteration of quadratic functions in the complex plain.

Currently displaying 321 – 340 of 378