Lower and upper bounds for the splitting of separatrices of a pendulum under a fast quasiperiodic forcing.
We consider limit cycles of a class of polynomial differential systems of the form where and are positive integers, and have degree and , respectively, for each , and is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center , using the averaging theory of first and second order.
We show that in normalized families of polynomial or rational maps, Misiurewicz maps (critically finite or infinite) unfold generically. For example, if is critically finite with non-degenerate critical point such that are hyperbolic periodic points for i = 1,...,n, then IV-1. Age impartible......................................................................................................................................................................... 31 is a local diffeomorphism...
We first examine conditions implying monotonicity of the period function for potential systems with a center at 0 (in the whole period annulus). We also present a short comparative survey of the different criteria. We apply these results to quadratic Loud systems for various values of the parameters D and F. In the case of noncritical periods we propose an algorithm to test the monotonicity of the period function for . Our results may be viewed as a contribution to proving (or disproving) a conjecture...
We are interested in conditions under which the two-dimensional autonomous system ẋ = y, ẏ = -g(x) - f(x)y, has a local center with monotonic period function. When f and g are (non-odd) analytic functions, Christopher and Devlin [C-D] gave a simple necessary and sufficient condition for the period to be constant. We propose a simple proof of their result. Moreover, in the case when f and g are of class C³, the Liénard systems can have a monotonic period function...
In this paper we consider cubic polynomial systems of the form: x' = y + P(x, y), y' = −x + Q(x, y), where P and Q are polynomials of degree 3 without linear part. If M(x, y) is an integrating factor of the system, we propose its reciprocal V (x, y) = 1 / M(x,y) as a linear function of certain coefficients of the system. We find in this way several new sets of sufficient conditions for a center. The resulting integrating factors are of Darboux type and the first integrals are in the Liouville form.By...