Displaying 241 – 260 of 1346

Showing per page

Complex Unconditional Metric Approximation Property for C Λ ( ) spaces

Daniel Li (1996)

Studia Mathematica

We study the Complex Unconditional Metric Approximation Property for translation invariant spaces C Λ ( ) of continuous functions on the circle group. We show that although some “tiny” (Sidon) sets do not have this property, there are “big” sets Λ for which C Λ ( ) has (ℂ-UMAP); though these sets are such that L Λ ( ) contains functions which are not continuous, we show that there is a linear invariant lifting from these L Λ ( ) spaces into the Baire class 1 functions.

Consistency of trigonometric and polynomial regression estimators

Waldemar Popiński (1998)

Applicationes Mathematicae

The problem of nonparametric regression function estimation is considered using the complete orthonormal system of trigonometric functions or Legendre polynomials e k , k=0,1,..., for the observation model y i = f ( x i ) + η i , i=1,...,n, where the η i are independent random variables with zero mean value and finite variance, and the observation points x i [ a , b ] , i=1,...,n, form a random sample from a distribution with density ϱ L 1 [ a , b ] . Sufficient and necessary conditions are obtained for consistency in the sense of the errors f - f ^ N , | f ( x ) - N ( x ) | , x [ a , b ] ,...

Construction de p-multiplicateurs

Francisco González Vieli (1993)

Studia Mathematica

Using characteristic functions of polyhedra, we construct radial p-multipliers which are continuous over n but not continuously differentiable through S n - 1 and give a p-multiplier criterion for homogeneous functions over 2 . We also exhibit fractal p-multipliers over the real line.

Convergence of greedy approximation I. General systems

S. V. Konyagin, V. N. Temlyakov (2003)

Studia Mathematica

We consider convergence of thresholding type approximations with regard to general complete minimal systems eₙ in a quasi-Banach space X. Thresholding approximations are defined as follows. Let eₙ* ⊂ X* be the conjugate (dual) system to eₙ; then define for ε > 0 and x ∈ X the thresholding approximations as T ε ( x ) : = j D ε ( x ) e * j ( x ) e j , where D ε ( x ) : = j : | e * j ( x ) | ε . We study a generalized version of T ε that we call the weak thresholding approximation. We modify the T ε ( x ) in the following way. For ε > 0, t ∈ (0,1) we set D t , ε ( x ) : = j : t ε | e * j ( x ) | < ε and consider the weak...

Currently displaying 241 – 260 of 1346