Displaying 41 – 60 of 1343

Showing per page

A note on fusion Banach frames

S. K. Kaushik, Varinder Kumar (2010)

Archivum Mathematicum

For a fusion Banach frame ( { G n , v n } , S ) for a Banach space E , if ( { v n * ( E * ) , v n * } , T ) is a fusion Banach frame for E * , then ( { G n , v n } , S ; { v n * ( E * ) , v n * } , T ) is called a fusion bi-Banach frame for E . It is proved that if E has an atomic decomposition, then E also has a fusion bi-Banach frame. Also, a sufficient condition for the existence of a fusion bi-Banach frame is given. Finally, a characterization of fusion bi-Banach frames is given.

A note on integer translates of a square integrable function on ℝ

Maciej Paluszyński (2010)

Colloquium Mathematicae

We consider the subspace of L²(ℝ) spanned by the integer shifts of one function ψ, and formulate a condition on the family ψ ( · - n ) n = - , which is equivalent to the weight function n = - | ψ ̂ ( · + n ) | ² being > 0 a.e.

A note on rearrangements of Fourier coefficients

Hugh L. Montgomery (1976)

Annales de l'institut Fourier

Let f ( x ) Σ a n e 2 π i n x , f * ( x ) n = 0 a * n cos 2 π n x , where the a * n are the numbers | a n | rearranged so that a n * 0 . Then for any convex increasing ψ , ψ ( | f | 2 1 ψ ( 20 | f * | 2 1 . The special case ψ ( t ) = t q / 2 , q 2 , gives f q 5 f * q an equivalent of Littlewood.

Currently displaying 41 – 60 of 1343