Modal stabilizability and spectral synthesis
The aim of this paper is to answer some questions concerning weak resolvents. Firstly, we investigate the domain of extension of weak resolvents Ω and find a formula linking Ω with the Taylor spectrum. We also show that equality of weak resolvents of operator tuples A and B results in isomorphism of the algebras generated by these operators. Although this isomorphism need not be of the form (1) X ↦ U*XU, where U is an isometry, for normal operators it is always possible...
Four applications are outlined of pseudospectra of highly nonnormal linear operators.
We show that a positive semigroup on with generator A and ||R(α + i β)|| → 0 as |β| → ∞ for some α ∈ ℝ is continuous in the operator norm for t>0. The proof is based on a criterion for norm continuity in terms of “smoothing properties” of certain convolution operators on general Banach spaces and an extrapolation result for the -scale, which may be of independent interest.
The paper concerns operators of deformed structure like q-normal and q-hyponormal operators with the deformation parameter q being a positive number different from 1. In particular, an example of a q-hyponormal operator with empty spectrum is given, and q-hyponormality is characterized in terms of some operator inequalities.