Displaying 381 – 400 of 700

Showing per page

Polaroid type operators and compact perturbations

Chun Guang Li, Ting Ting Zhou (2014)

Studia Mathematica

A bounded linear operator T acting on a Hilbert space is said to be polaroid if each isolated point in the spectrum is a pole of the resolvent of T. There are several generalizations of the polaroid property. We investigate compact perturbations of polaroid type operators. We prove that, given an operator T and ε > 0, there exists a compact operator K with ||K|| < ε such that T + K is polaroid. Moreover, we characterize those operators for which a certain polaroid type property is stable under...

Polaroid type operators under perturbations

Pietro Aiena, Elvis Aponte (2013)

Studia Mathematica

A bounded operator T defined on a Banach space is said to be polaroid if every isolated point of the spectrum is a pole of the resolvent. The "polaroid" condition is related to the conditions of being left polaroid, right polaroid, or a-polaroid. In this paper we explore all these conditions under commuting perturbations K. As a consequence, we give a general framework from which we obtain, and also extend, recent results concerning Weyl type theorems (generalized or not) for T + K, where K is an...

Polynomials in the Volterra and Ritt operators

Dashdondog Tsedenbayar, Jaroslav Zemánek (2005)

Banach Center Publications

We continue the paper [Ts] on the boundedness of polynomials in the Volterra operator. This provides new ways of constructing power-bounded operators. It seems interesting to point out that a similar procedure applies to the operators satisfying the Ritt resolvent condition: compare Theorem 5 and Theorem 9 below.

Power-bounded elements and radical Banach algebras

Graham Allan (1997)

Banach Center Publications

Firstly, we give extensions of results of Gelfand, Esterle and Katznelson--Tzafriri on power-bounded operators. Secondly, some results and questions relating to power-bounded elements in the unitization of a commutative radical Banach algebra are discussed.

Precompactness in the uniform ergodic theory

Yu. Lyubich, J. Zemánek (1994)

Studia Mathematica

We characterize the Banach space operators T whose arithmetic means n - 1 ( I + T + . . . + T n - 1 ) n 1 form a precompact set in the operator norm topology. This occurs if and only if the sequence n - 1 T n n 1 is precompact and the point 1 is at most a simple pole of the resolvent of T. Equivalent geometric conditions are also obtained.

Currently displaying 381 – 400 of 700