Starke Konvergenz im verallgemeinerten Sinne und Spektra.
We study left n-invertible operators introduced in two recent papers. We show how to construct a left n-inverse as a sum of a left inverse and a nilpotent operator. We provide refinements for results on products and tensor products of left n-invertible operators by Duggal and Müller (2013). Our study leads to improvements and different and often more direct proofs of results of Duggal and Müller (2013) and Sid Ahmed (2012). We make a conjecture about tensor products of left n-invertible operators...
A lemma of Gelfand-Hille type is proved. It is used to give an improved version of a result of Kalton on sums of idempotents.
2000 Mathematics Subject Classification: 47A10, 47A13.In this paper, we give a description of Taylor spectrum of commuting 2-contractions in terms of characteritic functions of such contractions. The case of a single contraction obtained by B. Sz. Nagy and C. Foias is generalied in this work.
A Banach space operator T ∈ has a left m-inverse (resp., an essential left m-inverse) for some integer m ≥ 1 if there exists an operator S ∈ (resp., an operator S ∈ and a compact operator K ∈ ) such that (resp., ). If is left -invertible (resp., essentially left -invertible), then the tensor product T₁ ⊗ T₂ is left (m₁ + m₂-1)-invertible (resp., essentially left (m₁ + m₂-1)-invertible). Furthermore, if T₁ is strictly left m-invertible (resp., strictly essentially left m-invertible), then...
We provide a survey of properties of the Cesàro operator on Hardy and weighted Bergman spaces, along with its connections to semigroups of weighted composition operators. We also describe recent developments regarding Cesàro-like operators and indicate some open questions and directions of future research.