Displaying 41 – 60 of 71

Showing per page

A study of resolvent set for a class of band operators with matrix elements

Andrey Osipov (2016)

Concrete Operators

For operators generated by a certain class of infinite three-diagonal matrices with matrix elements we establish a characterization of the resolvent set in terms of polynomial solutions of the underlying second order finite-difference equations. This enables us to describe some asymptotic behavior of the corresponding systems of vector orthogonal polynomials on the resolvent set. We also find that the operators generated by infinite Jacobi matrices have the largest resolvent set in this class.

A-Browder-type theorems for direct sums of operators

Mohammed Berkani, Mustapha Sarih, Hassan Zariouh (2016)

Mathematica Bohemica

We study the stability of a-Browder-type theorems for orthogonal direct sums of operators. We give counterexamples which show that in general the properties ( SBaw ) , ( SBab ) , ( SBw ) and ( SBb ) are not preserved under direct sums of operators. However, we prove that if S and T are bounded linear operators acting on Banach spaces and having the property ( SBab ) , then S T has the property ( SBab ) if and only if σ SBF + - ( S T ) = σ SBF + - ( S ) σ SBF + - ( T ) , where σ SBF + - ( T ) is the upper semi-B-Weyl spectrum of T . We obtain analogous preservation results for the properties ( SBaw ) , ( SBb ) and ( SBw ) with...

Abstract Weyl-type theorems

Mohammed Berkani (2016)

Mathematica Bohemica

In this paper, we give a new approach to the study of Weyl-type theorems. Precisely, we introduce the concepts of spectral valued and spectral partitioning functions. Using two natural order relations on the set of spectral valued functions, we reduce the question of relationship between Weyl-type theorems to the study of the set difference between the parts of the spectrum that are involved. This study solves completely the question of relationship between two spectral valued functions, comparable...

An Atkinson-type theorem for B-Fredholm operators

M. Berkani, M. Sarih (2001)

Studia Mathematica

Let X be a Banach space and let T be a bounded linear operator acting on X. Atkinson's well known theorem says that T is a Fredholm operator if and only if its projection in the algebra L(X)/F₀(X) is invertible, where F₀(X) is the ideal of finite rank operators in the algebra L(X) of bounded linear operators acting on X. In the main result of this paper we establish an Atkinson-type theorem for B-Fredholm operators. More precisely we prove that T is a B-Fredholm operator if and only if its projection...

Currently displaying 41 – 60 of 71