-boundedness and -compactness of a class of Fourier integral operators.
We prove the norm estimates for operator-valued functions on free groups supported on the words with fixed length (). Next, we replace the translations by the free generators with a free family of operators and prove inequalities of the same type.
We consider a family of non-unimodular rank one NA-groups with roots not all positive, and we show that on these groups there exists a distinguished left invariant sub-Laplacian which admits a differentiable functional calculus for every p ≥ 1.
For an absolutely continuous contraction T on a Hilbert space 𝓗, it is shown that the factorization of various classes of L¹ functions f by vectors x and y in 𝓗, in the sense that ⟨Tⁿx,y⟩ = f̂(-n) for n ≥ 0, implies the existence of invariant subspaces for T, or in some cases for rational functions of T. One of the main tools employed is the operator-valued Poisson kernel. Finally, a link is established between L¹ factorizations and the moment sequences studied in the Atzmon-Godefroy method, from...
Let m be a Radon measure on C without atoms. In this paper we prove that if the Cauchy transform is bounded in L2(m), then all 1-dimensional Calderón-Zygmund operators associated to odd and sufficiently smooth kernels are also bounded in L2(m).
Sea H un espacio de Hilbert complejo, separable y de dimensión infinita. Denotaremos por L(H) al álgebra de todos los operadores acotados en H. Carl Pearcy en 1977 introdujo el concepto de figura espectral de un operador T en L(H) [13]. Sin lugar a dudas hay dos resultados que hacen de la figura espectral de un operador un concepto importante. El primero se debe a Brown, Douglas y Fillmore:"Dos operadores esencialmente normales son débilmente equivalentes si y sólo si tienen la misma figura espectral".El...
In this paper Lambert multipliers acting between spaces are characterized by using some properties of conditional expectation operator. Also, Fredholmness of corresponding bounded operators is investigated.
Le théorème classique de Riesz-Raikov assure que, pour tout entier et toute de , où , les moyennespour presque tout point de . J.Bourgain (cf.Israël Math. Conf. Proc. 1990) a prouvé que la convergence précédente a lieu pour tout réel algébrique et toute de . Dans cet article nous prouvons que, si est un endomorphisme de algébrique sur , dont les valeurs propres sont toutes de module , alors pour toute de , les moyennes convergent vers pour presque tout point de . Nous...
Nous prouvons l’hyper-réflexivité du shift bilatéral sur , lorsque le poids vérifie for et .