Displaying 221 – 240 of 272

Showing per page

Topological asymptotic analysis of the Kirchhoff plate bending problem

Samuel Amstutz, Antonio A. Novotny (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The topological asymptotic analysis provides the sensitivity of a given shape functional with respect to an infinitesimal domain perturbation, like the insertion of holes, inclusions, cracks. In this work we present the calculation of the topological derivative for a class of shape functionals associated to the Kirchhoff plate bending problem, when a circular inclusion is introduced at an arbitrary point of the domain. According to the literature, the topological derivative has been fully developed...

Topological asymptotic analysis of the Kirchhoff plate bending problem

Samuel Amstutz, Antonio A. Novotny (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The topological asymptotic analysis provides the sensitivity of a given shape functional with respect to an infinitesimal domain perturbation, like the insertion of holes, inclusions, cracks. In this work we present the calculation of the topological derivative for a class of shape functionals associated to the Kirchhoff plate bending problem, when a circular inclusion is introduced at an arbitrary point of the domain. According to the literature, the topological derivative has been fully developed...

Topological degree, Jacobian determinants and relaxation

Irene Fonseca, Nicola Fusco, Paolo Marcellini (2005)

Bollettino dell'Unione Matematica Italiana

A characterization of the total variation T V u , Ω of the Jacobian determinant det D u is obtained for some classes of functions u : Ω R n outside the traditional regularity space W 1 , n Ω ; R n . In particular, explicit formulas are deduced for functions that are locally Lipschitz continuous away from a given one point singularity x 0 Ω . Relations between T V u , Ω and the distributional determinant Det D u are established, and an integral representation is obtained for the relaxed energy of certain polyconvex functionals at maps u W 1 , p Ω ; R n W 1 , Ω x 0 ; R n .

Topological derivatives for semilinear elliptic equations

Mohamed Iguernane, Serguei A. Nazarov, Jean-Rodolphe Roche, Jan Sokolowski, Katarzyna Szulc (2009)

International Journal of Applied Mathematics and Computer Science

The form of topological derivatives for an integral shape functional is derived for a class of semilinear elliptic equations. The convergence of finite element approximation for the topological derivatives is shown and the error estimates in the L∞ norm are obtained. The results of numerical experiments which confirm the theoretical convergence rate are presented.

Topological dual of B ( I , ( X , Y ) ) with application to stochastic systems on Hilbert space

N.U. Ahmed (2009)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we prove that the topological dual of the Banach space of bounded measurable functions with values in the space of nuclear operators, furnished with the natural topology, is isometrically isomorphic to the space of finitely additive linear operator-valued measures having bounded variation in a Banach space containing the space of bounded linear operators. This is then applied to a stochastic structural control problem. An optimal operator-valued measure, considered as the structural...

Topological sensitivity analysis for time-dependent problems

Boris Vexler, Takéo Takahashi, Samuel Amstutz (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The topological sensitivity analysis consists in studying the behavior of a given shape functional when the topology of the domain is perturbed, typically by the nucleation of a small hole. This notion forms the basic ingredient of different topology optimization/reconstruction algorithms. From the theoretical viewpoint, the expression of the topological sensitivity is well-established in many situations where the governing p.d.e. system is of elliptic type. This paper focuses on the derivation...

Topological sensitivity analysis for time-dependent problems

Samuel Amstutz, Takéo Takahashi, Boris Vexler (2007)

ESAIM: Control, Optimisation and Calculus of Variations

The topological sensitivity analysis consists in studying the behavior of a given shape functional when the topology of the domain is perturbed, typically by the nucleation of a small hole. This notion forms the basic ingredient of different topology optimization/reconstruction algorithms. From the theoretical viewpoint, the expression of the topological sensitivity is well-established in many situations where the governing p.d.e. system is of elliptic type. This paper focuses on the derivation...

Topology and geometry of nontrivial rank-one convex hulls for two-by-two matrices

Carl-Friedrich Kreiner, Johannes Zimmer (2006)

ESAIM: Control, Optimisation and Calculus of Variations

Continuing earlier work by Székelyhidi, we describe the topological and geometric structure of so-called T4-configurations which are the most prominent examples of nontrivial rank-one convex hulls. It turns out that the structure of T4-configurations in 2 × 2 is very rich; in particular, their collection is open as a subset of ( 2 × 2 ) 4 . Moreover a previously purely algebraic criterion is given a geometric interpretation. As a consequence, we sketch an improved algorithm to detect T4-configurations. ...

Topology optimization of quasistatic contact problems

Andrzej Myśliński (2012)

International Journal of Applied Mathematics and Computer Science

This paper deals with the formulation of a necessary optimality condition for a topology optimization problem for an elastic contact problem with Tresca friction. In the paper a quasistatic contact model is considered, rather than a stationary one used in the literature. The functional approximating the normal contact stress is chosen as the shape functional. The aim of the topology optimization problem considered is to find the optimal material distribution inside a design domain occupied by the...

Topology optimization of systems governed by variational inequalities

Andrzej Myśliński (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

This paper deals with the formulation of the necessary optimality condition for a topology optimization problem of an elastic body in unilateral contact with a rigid foundation. In the contact problem of Tresca, a given friction is governed by an elliptic variational inequality of the second order. The optimization problem consists in finding such topology of the domain occupied by the body that the normal contact stress along the contact boundary of the body is minimized. The topological derivative...

Traffic plans.

Marc Bernot, Vicent Caselles, Jean-Michel Morel (2005)

Publicacions Matemàtiques

In recent research in the optimization of transportation networks, the problem was formalized as finding the optimal paths to transport a measure y+ onto a measure y- with the same mass. This approach is realistic for simple good distribution networks (water, electric power,. ..) but it is no more realistic when we want to specify who goes where, like in the mailing problem or the optimal urban traffic network problem. In this paper, we present a new framework generalizing the former approathes...

Transfer function equivalence of feedback/feedforward compensators

Vladimír Kučera (1998)

Kybernetika

Equivalence of several feedback and/or feedforward compensation schemes in linear systems is investigated. The classes of compensators that are realizable using static or dynamic, state or output feedback are characterized. Stability of the compensated system is studied. Applications to model matching are included.

Currently displaying 221 – 240 of 272