Displaying 41 – 60 of 176

Showing per page

Régularité du problème de Kelvin–Helmholtz pour l’équation d’Euler 2D

Gilles Lebeau (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Nous prouvons que pour toute solution u du problème de Kelvin–Helmholtz des nappes de tourbillons pour l’équation d’Euler bi-dimensionnelle, définie localement en temps, la courbe de saut de u et la densité de tourbillon sont analytiques (sous une hypothèse de régularité Holderienne de la courbe de saut). Nous donnons également un résultat de régularité partielle de la trace de u sur t = 0 lorsque u est définie sur un demi-interval [ O , T [ .

Régularité du problème de Kelvin–Helmholtz pour l'équation d'Euler 2d

Gilles Lebeau (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Nous prouvons que pour toute solution u du problème de Kelvin–Helmholtz des nappes de tourbillons pour l'équation d'Euler bi-dimensionnelle, définie localement en temps, la courbe de saut de u et la densité de tourbillon sont analytiques (sous une hypothèse de régularité Holderienne de la courbe de saut). Nous donnons également un résultat de régularité partielle de la trace de u sur t=0 lorsque u est définie sur un demi-interval [O,T[.

Régularité Lipschitzienne des Géodésiques Minimisantes pour Quelques Distributions Affines

Bensalem, Naceurdine (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 49J15, 49J30, 53B50.In the context of sub-Riemannian geometry and the Lipschitzian regularity of minimizers in control theory, we investigate some properties of minimizing geodesics for certain affine distributions. In particular, we consider the case of a generalized H2-strong affine distribution and the case of an affine Plaff system of maximal class.

Regularity along optimal trajectories of the value function of a Mayer problem

Carlo Sinestrari (2004)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an optimal control problem of Mayer type and prove that, under suitable conditions on the system, the value function is differentiable along optimal trajectories, except possibly at the endpoints. We provide counterexamples to show that this property may fail to hold if some of our conditions are violated. We then apply our regularity result to derive optimality conditions for the trajectories of the system.

Regularity along optimal trajectories of the value function of a Mayer problem

Carlo Sinestrari (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an optimal control problem of Mayer type and prove that, under suitable conditions on the system, the value function is differentiable along optimal trajectories, except possibly at the endpoints. We provide counterexamples to show that this property may fail to hold if some of our conditions are violated. We then apply our regularity result to derive optimality conditions for the trajectories of the system.

Regularity and optimal control of quasicoupled and coupled heating processes

Jiří Jarušek (1996)

Applications of Mathematics

Sufficient conditions for the stresses in the threedimensional linearized coupled thermoelastic system including viscoelasticity to be continuous and bounded are derived and optimization of heating processes described by quasicoupled or partially linearized coupled thermoelastic systems with constraints on stresses is treated. Due to the consideration of heating regimes being “as nonregular as possible” and because of the well-known lack of results concerning the classical regularity of solutions...

Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I : regularity

Andrea C. G. Mennucci (2004)

ESAIM: Control, Optimisation and Calculus of Variations

We formulate an Hamilton-Jacobi partial differential equation H ( x , D u ( x ) ) = 0 on a n dimensional manifold M , with assumptions of convexity of H ( x , · ) and regularity of H (locally in a neighborhood of { H = 0 } in T * M ); we define the “min solution” u , a generalized solution; to this end, we view T * M as a symplectic manifold. The definition of “min solution” is suited to proving regularity results about u ; in particular, we prove in the first part that the closure of the set where u is not regular may be covered by a countable number...

Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I: Regularity

Andrea C.G. Mennucci (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We formulate an Hamilton-Jacobi partial differential equation H( x, D u(x))=0 on a n dimensional manifold M, with assumptions of convexity of H(x, .) and regularity of H (locally in a neighborhood of {H=0} in T*M); we define the “minsol solution” u, a generalized solution; to this end, we view T*M as a symplectic manifold. The definition of “minsol solution” is suited to proving regularity results about u; in particular, we prove in the first part that the closure of the set where...

Currently displaying 41 – 60 of 176