Geometric convergence of iterative methods for variational inequalities with -matrices and diagonal monotone operators
We provide a geometric rigidity estimate à la Friesecke-James-Müller for conformal matrices. Namely, we replace by an arbitrary compact set of conformal matrices, bounded away from and invariant under , and rigid motions by Möbius transformations.
After a short introduction on micromagnetism, we will focus on a scalar micromagnetic model. The problem, which is hyperbolic, can be viewed as a problem of Hamilton-Jacobi, and, similarly to conservation laws, it admits a kinetic formulation. We will use both points of view, together with tools from geometric measure theory, to prove the rectifiability of the singular set of micromagnetic configurations.
Using a calibration method we prove that, if is a closed regular hypersurface and if the function is discontinuous along and regular outside, then the function which solvesis in turn discontinuous along and it is the unique absolute minimizer of the non-homogeneous Mumford-Shah functionalover , for large enough. Applications of the result to the study of the gradient flow by the method of minimizing movements are shown.
Si prova resistenza globale della soluzione di una equazione di Riccati collegata alla sintesi di un problema di controllo ottimale. Il problema considerato rappresenta la versione astratta di alcuni problemi governati da equazioni paraboliche con il controllo sulla frontiera.
We introduce an infinite-dimensional version of the Amann-Conley-Zehnder reduction for a class of boundary problems related to nonlinear perturbed elliptic operators with symmetric derivative. We construct global generating functions with finite auxiliary parameters, describing the solutions as critical points in a finite-dimensional space.
The problem of distributing two conducting materials with a prescribed volume ratio in a ball so as to minimize the first eigenvalue of an elliptic operator with Dirichlet conditions is considered in two and three dimensions. The gap ε between the two conductivities is assumed to be small (low contrast regime). The main result of the paper is to show, using asymptotic expansions with respect to ε and to small geometric perturbations of the optimal shape, that the global minimum of the first eigenvalue...
We consider a Canham − Helfrich − type variational problem defined over closed surfaces enclosing a fixed volume and having fixed surface area. The problem models the shape of multiphase biomembranes. It consists of minimizing the sum of the Canham − Helfrich energy, in which the bending rigidities and spontaneous curvatures are now phase-dependent, and a line tension penalization for the phase interfaces. By restricting attention to axisymmetric surfaces and phase distributions, we extend our previous...